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ABSTRACT 

This study compared the ability of six image descriptors, characterizing the morphology 

and elasticity of the descending aorta, to identify computed tomography (CT) images 

which contain visual indications of plaque.  This thesis is based on the hypothesis that 

regions of plaque distort the normal lumen shape resulting in corresponding changes in 

the CT image. This, in turn, allows the inference of the presence of plaque by identifying 

deviations in the smoothness, symmetry, or circularity of the lumen border or by 

measurements that allow for an estimate of the elastic properties of the arterial wall.  The 

project method included manually locating the descending aorta from a CT dataset, 

segmenting the lumen in each candidate slice, and computing descriptors from the 

resulting images.  The descriptors computed are the lumen circularity, lumen centroid 

displacement, the area difference between the smallest enclosing circle and the lumen 

border, and the fractal dimension of the lumen border.  In addition, the percentage 

expansion in lumen area and the dispersion of the lumen centroid were compared at the 

0% and 40% gating in the R-R interval during the cardiac cycle.  An assessment of the 

ability of each descriptor to identify the image slices containing potential plaque is 

included.  The descriptors were measured against a reference set of images which were 

visually classified by domain experts.   While each of the calculated descriptors was 

shown to have some merit, the circularity and the area difference between the smallest 

enclosing circle and the lumen border demonstrated the best individual performances in 

discriminating between the plaque and non-plaque images.  The overall best predictive 

model was found by combining the strengths of the two descriptors. 
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1. INTRODUCTION  

Heart disease remains the leading cause of death in the United States, accounting for 

approximately 26.6% of the 2,450,000 deaths in 2005 [1].  In addition, cerebrovascular 

diseases such as stroke comprised an additional 5.9% [1].  Coronary artery disease is an 

underlying factor in the majority of cardiovascular disease cases [2].  The condition of 

the aorta is an indicator of vascular health.  Specifically, studies have established that 

atherosclerosis of the thoracic aorta is one predictor for generalized atherosclerosis; 

coronary, carotid, and peripheral arterial disease [3].   

 

1.1 Cardiovascular System 

The cardiovascular system transports and distributes blood throughout the body to deliver 

materials such as oxygen and nutrients and to carry away waste products.  The blood 

vessels form a closed transport system with the arteries carrying blood away from the 

heart.  The large elastic arteries leave the heart and help propel blood. During ventricular 

contraction, their elasticity acts to accommodate the surge of blood and helps to maintain 

an even pressure [4]. 

 

The aorta is the largest elastic artery with a typical diameter of 2-3 centimeters [4].  The 

aorta is described by sections: the ascending aorta, the aortic arch, and the descending 

aorta.  As illustrated in the diagram shown in Figure 1, the ascending aorta emerges from 

the left ventricle of the heart with the coronary arteries branching from it to supply the 

heart muscle.  The aorta curves to form the aortic arch which is the transverse segment 

containing branches to supply the head, neck, and upper limbs.  The aortic arch 

completes an approximately 180�  turn at which point the aorta descends along the spine. 

The descending portion is referred to as the thoracic aorta above the diaphragm and the 

abdominal aorta below [4] [5].   
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Figure 1: The sections of the aorta [6]. 

 

As shown in Figure 2, the wall of an artery has three tunics or layers; the tunica interna, 

the tunica media, and the tunica externa.  The interna or intima is the inner surface closest 

to the lumen, the hollow center through which blood flows.  The interna contains a lining 

composed of a continuous layer of cells called the endothelium, the tissue which makes 

contact with the blood [4].  It is surrounded by a sub-layer of connective tissue interlaced 

with circularly arranged elastic bands.  The media is the thickest layer made of elastic 

fiber, connective tissues, and polysaccharide.  It is separated from the third, outermost 

layer by another elastic layer.  The outer layer, or adventitia, is made of connective tissue 

and contains nerves and capillaries. 
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Figure 2: The layers of the artery wall [7]. 

 

1.2 Atherosclerosis  

Arteriosclerosis is the thickening of the artery walls and the loss of elasticity.  One form 

of arteriosclerosis, atherosclerosis, is believed to begin with damage to the endothelium. 

Risk factors for atherosclerosis include: 

�  elevated cholesterol and triglyceride levels in the blood 

�  high blood pressure 

�  smoking 

�  diabetes [8] 

Damaged sites collect fat, cholesterol, calcium, cellular waste products, and other 

substances found in the blood along the arterial wall as illustrated in Figure 3 [9].  This 

buildup is called plaque, and it may thicken the endothelium significantly [8].  The 

severity of the atherosclerosis is often characterized by the amount and structure of the 

observed plaque.  A plaque is generally defined as a protrusion of the intimal surface of 

the vessel at least 2 mm thick which is different in appearance from the intimal surface.  
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Plaques less than 4mm are considered small while those greater than or equal to 4 mm are 

classified as large or severe [10] [11].  Ulceration, a discrete indentation of the luminal 

surface of the plaque with base width and maximum depth of at least 2 mm, can also 

occur [11].  In addition, approximately 90% of patients with cardiovascular disease 

exhibit vascular calcifications.  These deposits of calcium hydroxyapatite, a natural 

component found in bones and teeth, can diminish the wall elasticity [12] necessary for 

pressure regulation.  

 

Litovchik et al described the strong relationship between coronary, carotid, and aortic 

calcification in studies including the study of Eisen et al of a high risk population in 

which 91% of patients had coronary calcification.  Of these patients, 70% also had aortic 

calcification [5]. 

 

 
 

Figure 3: Plaque buildup causing narrowing of the artery lumen [9]. 



 

1.3 Computed Tomography

Computed tomography (CT) has become 

anatomy and pathology and is 

a CT scan, an X-ray source

images, or slices [13].  

Figure 4.  This series of CT slices

structures as illustrated in 

 

Figure 

6

omography 

(CT) has become a mainstay of non-invasive imaging for vascular 

anatomy and pathology and is a common method for diagnosing vascular

source rotates around the target to produce a set of cross

].  A subset of image slices from a cardiac CT scan 

series of CT slices can be used to reconstruct a 3D model of the internal 

illustrated in Figure 5 [14]. 

 

Figure 4: Series of image slices from a cardiac CT scan. 

invasive imaging for vascular 

vascular disease [5].  In 

set of cross-sectional 

scan is shown in 

reconstruct a 3D model of the internal 

 



 

Figure 5: 3D reconstruction of the cardiac region from the CT scan illustrated in Figure 4.

In particular, this study is focused on individual slices selected from the area of the 

descending aorta as illustrated in the reconstruction in 

 

Figure 6: 3D reconstruction of the section of the CT scan containing the aorta.

7

 

: 3D reconstruction of the cardiac region from the CT scan illustrated in Figure 4.

 

this study is focused on individual slices selected from the area of the 

descending aorta as illustrated in the reconstruction in Figure 6.  

 
 

: 3D reconstruction of the section of the CT scan containing the aorta.

 

: 3D reconstruction of the cardiac region from the CT scan illustrated in Figure 4. 

this study is focused on individual slices selected from the area of the 

: 3D reconstruction of the section of the CT scan containing the aorta. 
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In addition to still or static volumes, CT scanners can acquire motion sequences by 

synchronizing, or gating, image acquisition to the cardiac cycle.  These CT scanners are 

typically gated as an offset referenced to the R-R interval in an electrocardiogram.  The 

cardiac cycle refers to the sequence of events relating to the pressure and flow of blood 

from the beginning of one heartbeat to the beginning of the next.  As shown in Figure 7, 

one beat is generally measured from the peak of one R-wave, when the atrioventricular 

(A-V) valve closes, to the peak of the next.  Figure 7 also illustrates the changes in aortic 

pressure during the cardiac cycle which form the basis for the elastic descriptors 

described later in this thesis. 

 

 

 

Figure 7: A heartbeat is measured from the beginning of the R-wave when the A-V valve closes at the beginning 
of systole to the end of diastole [15]. 
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The gating effectively divides the R-R interval into a number of segments, usually 

between 10 and 20.  Each reconstructed CT volume relies on data obtained at a fixed 

offset in the cardiac cycle.  For consistency, the static descriptors in this study are all 

based on the CT images taken at the 75% point in the cardiac cycle; that is, 75% of the 

time of one heartbeat measured from the beginning of the R-wave.  For the time series 

descriptors, calculations are based on the differences between the images obtained at 0% 

(the beginning of the R-wave) and 40 % of the cardiac cycle.   

 

Tissue densities in CT images are recorded in terms of Hounsfield Units (HU).  In a CT 

scan, an arbitrary unit of x-ray attenuation is assigned to each voxel on a scale in which 

air has a value of �1000 HU; water, 0 HU; and compact bone, +1000HU.  Values for 

Hounsfield Units are shown in Table 1 for representative tissue types [16].  The HU scale 

is from –1,024 to +3,071, a 12-bit range or grayscale of 4,096 from jet black (-1,024 HU) 

to pure white (3,071 HU).   

 

Since soft plaque is substantially transparent to x-ray, a contrast agent is used to allow 

better visualization of plaque-related lumen displacement [12].  Schroeder et al compared 

plaque compositions in contrast enhanced CT scans with results found by intracoronary 

ultrasound to define plaque density ranges as shown in Table 2 [17]. 

 

Table 1: Hounsfield Units for Representative Tissue Types 

Tissue Hounsfield Units
Bone 1000
Liver 40 to 60

White Matter       ~20 to 30
Grey Matter       ~37 to 45

Blood 40
Muscle 10 to 40
Kidney 30

Cerebrospinal Fluid 15
Water 0

Fat -50 to 00
Air -1000  
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Table 2: Hounsfield Units for Plaque Characterization 

14 ± 26 HU  –42 to +40 HU soft plaque
91 ± 21 HU    61 to 112 HU intermediate plaque

419 ± 194 HU  126 to 736 HU calcified plaque

Estimated 
Range

Actual 
Range

Plaque 
Characterization

 

 

Nandalur et al used similar definitions for plaque density [18].  Their study defined soft 

plaques with lipid rich cores as having median density less than 50 HU; intermediate 

plaques, associated with large amounts of fibrous tissue, having densities of 51-130 HU; 

and calcified plaques as having densities above 130 HU.  They also observed that 

calcified plaques generally had densities considerably higher than 350 HU which is the 

median density of contrast media. 

 

2. LITERATURE REVIEW  

2.1 Image Segmentation 

Kurkure, Avila-Montes, and Kakadiaris [19] developed a method to locate and segment 

the thoracic aorta in non-contrast CT images to replace the manual annotation of calcified 

plaques.  Their method used a series of 2D slices from the CT data based on the 

assumption that the aorta runs approximately vertically in this section of the abdomen.  

After preprocessing, they applied a Hough circle transform on regions of interest for the 

ascending and descending aorta and they found an optimal combination of the Hough 

circles by using a cost function which minimized the change in horizontal position 

between circles in adjacent slices, the change in radius between circles in adjacent slices, 

and the Hough value of points in Hough space.  An additional cost function was able to 

further refine gaps and smooth out the horizontal boundary.  Their segmentation method 

compared favorably when it was evaluated against aortic boundaries manually annotated 

by an expert.  Consistent with the Kurkure method, this project takes advantage of the 

relatively vertical orientation of the descending aorta and processes the subset of image 

slices with the assumption that the 2D cross-section of the aorta is approximately circular.  

Both the circularity descriptor and the measurement of the displacement of the centroid 

from the artery center are based on this assumption. 
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Renard and Yang [20] developed a technique for segmenting both the lumen and the 

arterial wall in contrast-enhanced CT images of the coronary arteries by determining a 

centerline and classifying the tissues within a cylinder centered on that line.  They 

separated the tissues into lumen, wall, and the surrounding myocardium and noted that 

the lumen intensity was the brightest among the three classes.  The difference in the 

cross-sectional areas of the lumen and the wall regions was then used to estimate plaque 

regions.  This thesis also relies upon the brightness of the contrast-enhanced lumen to 

distinguish its border from the surrounding tissues, concentrating on characteristics of the 

lumen border outline to indicate potential plaque areas.   

 

2.2 Image Descriptors 

Once the lumen boundary has been estimated, its characteristics can be described.  

Nguyen, and Rangayyan [21] found that the fractal dimension was a good shape feature 

to quantify the complexity and irregularity of an object’s boundary.  The technique was 

successfully applied to contours that were hand drawn by an expert on over 100 

mammogram masses, and a clear separation of benign and malignant masses was found, 

with the smoother contours of the benign masses generating a lower fractal dimension.  

In a similar way, the presence of plaque was expected to increase the complexity and 

irregularity of the lumen border which would be reflected in a higher calculated fractal 

dimension. 

 

In addition to static descriptors to identify image slices containing potential areas of 

plaque, information about the elastic properties of the aortic wall from time series images 

is explored. These images are recorded at increments within the R-R interval, the 

duration of the cardiac cycle.  Stefanadis et al [22] verified that aortic elastic properties 

represent a substantial independent risk factor in predicting coronary events in patients 

with coronary artery disease.  They considered distensibility, calculated from the 

percentage change in cross-sectional area between diastole and systole, in evaluating 

elastic properties.  Galante et al [23] segmented the aorta from multi-detector CT images 

and estimated shape and size features using a temporal resolution of ten frames per 

cardiac cycle.  They were able to verify a decrease in elasticity and strain in vessels 
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containing aneurysms, and their measurements compared well with current methods 

which require doctors to perform manual measurements of aortic diameters at specific 

anatomical sites.  This thesis considers the percentage expansion of the lumen as an 

indicator of distensibility and the dispersion of the centroid value as a measure of 

asymmetry to determine how the presence of plaque might be associated with stiffness or 

asymmetry in the expansion of the aortic cross-sectional area during the cardiac cycle. 

 

3. METHODOLOGY 

3.1 Overview 

The focus of this study is a comparison of the ability of a set of descriptors to 

characterize images of the aorta to identify those with potential areas of plaque.  The 

method required: 

 

�  Manual selection of a region of interest containing the descending aorta from a 

complete CT scan. 

�  Segmentation of the lumen border outline: 

o Initial highlighting of the region of lumen candidate pixels using a pulse- 

coupled neural network (PCNN). 

o Identifying the outer border of this region of interest. 

�  Calculation of descriptors based on border outline of a single image obtained at 

the 75% gating of the cardiac cycle.  These are referred to as “static descriptors” 

and include: 

o Circularity based on perimeter and area of lumen. 

o Difference between the best estimate of the center of the artery and the 

centroid of the lumen. 

o Percentage difference between the lumen area and the area of the smallest 

enclosing circle containing the lumen area. 

o Fractal dimension of the border outline. 
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�  Incorporation of time series information into “dynamic descriptors” comparing 

differences in image slices recorded at 0% and 40% gating during the cardiac 

cycle including: 

o Dispersion of the centroid value as a measure of asymmetry in aortic 

expansion. 

o Distensibility based on the percentage expansion of the area of the lumen. 

�  Comparison of the ability of each descriptor to identify the subset of image slices 

containing potential plaque areas that have been validated by a medical expert.  

 

A review of the resources used and a detailed explanation of each step are contained in 

the following sections. 

 

3.2 Datasets 

The project analyzed 768 slices from eight CT studies manually classified by  

domain experts under the direction of Jeffrey Soble, M.D., Associate Professor of 

Medicine, Chief of Cardiology Clinical Consultant Service,   Associate Director, Clinical 

Echocardiography, and Director, Cardiology Information Services at Rush University 

Medical Center, Chicago, Illinois.  Additional information on the classifications may be 

found in section 4, Assessment.  Of these 768 slices, 168 slices were identified as likely 

to be atherosclerotic and 600 were found to have no visually detectable indications of 

plaque.   In addition there were 34 images which the experts declined to classify for a 

total of 802 images.  A summary of the dataset features is shown in Table 3. 

 

Table 3: Input Datasets 

Manufacturer
Model 
Name

Station 
Name

Series 
Description Rows Cols

Slice 
Thickness Plaque

Non-
Plaque

Philips Brilliance 64 philips-9502 75% 512 512 0.90 0.400391 0.400391 45 29

Philips Brilliance 64 philips-9502 75% 512 512 0.67 0.386719 0.386719 0 8

Philips Brilliance 64 philips-9502 75% 512 512 0.90 0.429688 0.429688 22 162

Philips Brilliance 64 philips-9502 75% 512 512 0.90 0.507822 0.507822 0 73

Philips Brilliance 64 philips-9502 75% 512 512 0.67 0.300781 0.300781 0 131

Philips Brilliance 64 philips-e4cd175 75% 512 512 0.90 0.359375 0.359375 0 197

Philips Brilliance 64 philips-9502 75% 512 512 0.67 0.429688 0.429688 46 0
Philips Brilliance 64 philips-9502 75% 512 512 0.67 0.429688 0.429688 55 0

Pixel Spacing
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3.3 Software Summary 

A variety of open source software packages were supplemented by custom programming 

to process the CT datasets, including the following:   

�  OsiriX: an image-processing software package which is compliant with the 

DICOM format, the standard for producing, storing, and displaying medical 

images.   It was designed for the visualization of multidimensional images and 

contains 2D, 3D, and 4D viewers.  It can read and display DICOM format files as 

well as the DICOM meta-data contained in the file headers.  In addition, it can 

write a DICOM file from a 2D/3D reconstruction which allowed manual 

inspection and selection of a volume of interest from the full CT scan dataset [14].   

�  The Insight Toolkit (ITK): modules for performing registration and segmentation 

of medical images. It also provides the ability to read and write a DICOM format 

file, and it contains numerous filtering, geometric transformation, and statistical 

functions.  It is primarily a C++ package, but many of the functions have been 

wrapped for alternative programming languages such as Python [24].   

�  Other available tools: Python and NumPy to process multidimensional arrays, 

SciPy for scientific applications, and the Visualization Toolkit (VTK) for 2D and 

3D visualization [25]. 

�  Custom software developed for PCNN pre-processing [26] [27]. 

 

3.4 Selection 

The descending thoracic section of the aorta can be roughly selected from the complete 

CT scan dataset as a volume of interest to facilitate and minimize the amount of 

processing required.  As in the Kurkure study [19], the analysis takes advantage of the 

relatively vertical orientation of the descending aorta, resulting in a series of 2D image 

slices in which the cross-section of the aorta is approximately circular.  Figure 8 is an 

example of one full CT slice in which the region of interest, including the descending 

aorta, is identified by the green rectangle.  In each study, the region of interest containing 

the descending aorta was manually selected and propagated through the individual slices 

from a complete CT scan. The resulting volume of interest was written to a new DICOM 

file. 
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Figure 8: Full cardiac CT slice with a manually selected region of interest. 

 

For the static descriptors, this volume of interest contained between 200 and 300 slices in 

the series taken at 75% of the R-R interval.  Figure 9 shows a sample of regions of 

interest.  From this volume subset, usable image slices were selected based on the ability 

to segment the lumen of the aorta without interference from branching vessels or other 

anatomical structures with HU values similar to that of the contrast agent.   

 

 

       
 

Figure 9:  Sample of selected input images. 
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The study images, as shown above, were converted from the DICOM format to TIFF 

which is a flexible public domain raster file format originally developed by Adobe for 

archiving images [28].  Since this process simply added a constant offset of 1024 to the 

HU value of each pixel, it allowed for visual inspection of the results at each stage of the 

process without any gain or loss of image information. 

 

3.5 Segmentation 

To help identify the lumen, each image was preprocessed by a pulse-coupled neural 

network (PCNN) [29]. The output of a PCNN is a series of pulses or binary images 

associated with visually interesting features and boundaries.  In contrast to some other 

neural networks such as the multi-level perceptron, the PCNN does not use multiple 

layers (input, hidden, output) nor does it involve training [30].  This model involves only 

a single layer with the connections between a neuron and its neighbors based on the 

distance between their positions [30].  The segmenting and edge detection ability of the 

PCNN is derived from the influence of a neuron on its neighbors which encourages 

similar segments of the image to pulse in unison [30] [31] [32].  The PCNN has been 

used successfully as a pre-processing step in other medical imaging applications which 

required segmentation of borders or tissue types [26] [27] [33] [34]. 

 

The PCNN is modeled after the processing of the visual cortex in a small mammal.  This 

is the part of the brain that receives processed information from the eye and converts it 

into a stream of pulses.  Eckhorn used the cat visual cortex to develop a neuron model 

[35] which was adapted for image processing by Lindblad and Kinser [29].  Their 

resulting computer model retains two important characteristics of the biological system: 
 

�  The neurons or visual receptors are interconnected meaning that when one 

receptor receives optical input, it affects the behavior of its neighbors. 

�  The eye receives feedback information which affects the output of a receptor. 
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Figure 10: PCNN model equations. 

 
Lindblad and Kinser’s model, detailed in Figure 10, has been used successfully in image 

processing with desirable features that include relative immunity to translation, scaling, 

and rotation [29].  In their PCNN model, each image pixel serves as the input stimulus 

value “� ” for the individual neuron at position ij  and has the following properties at each 

pulse: 
 

�  Every neuron receives feeding input “F” based on its own stimulus and those 

of neighboring neurons. 

�  Every neuron receives linking input “L” based on output from other neurons. 

�  The feeding and linking input components are combined to form an activity 

term “U” for the neuron which is compared to a threshold to determine the 

binary output, “Y”, of the neuron at interval t. 

�  The threshold “� ” decays with each pulse until the neuron activity level 

exceeds the threshold value and fires.  The neuron firing also causes “� ” to be 

reset to its highest point. 

�  “M” and “W” represent weighting factors for the inputs in the feeding and 

linking functions. 

 

  



 18

The parameters used in this study were chosen empirically as:  

�  � -values for the feeding, linking, and threshold were set at 10.0, 1.0, and 15.0. 

�   The �  value for the strength of the linking term in the activity calculation was 

0.1. 

�   The V-potential values for feeding, linking, and resetting the threshold were 

set at 0.0, 0.5, and 20.0. 

In addition, the initial threshold �  and the value of  ��� � ��  were set to zero for each 

neuron. 

 

For each set of study images, a representative image slice was selected for input in a 

preliminary execution of the PCNN.  The pixel values were contrast-stretched from a 

range of approximately 0 to 2000 to a range of 0 to 65535.  Fifty iterations of the PCNN 

were executed in the trial, resulting in a series of binary images. A subset of these binary 

images is shown in Figure 11 along with this binary output superimposed on the original 

image for reference.  The output from the representative image was used to visually 

select the iteration that best outlines the lumen border.   

 

It was observed that due to the high HU value of the lumen area, early pulses begin 

within the lumen and propagate out toward the border before breaking up.  This auto-

wave, characteristic of the PCNN [30], allowed the creation of a binary map of the lumen 

region by summing the PCNN output for a fixed number of iterations as illustrated in 

Figure 12.  Other features in the image also have pulse output from the PCNN so the 

lumen area must be separated from this binary output as shown in Figure 13.   

 

The perimeter of the region of interest forms the estimated location of the lumen border 

as shown in Figure 14.  This estimated border is defined by the set of pixels which have a 

background pixel (black) in a 4-neighbor as illustrated by Burger and Burge [36].  This 

calculated border is superimposed on the original image for illustration in Figure 15.  The 

lumen perimeter and region area serve as the basis for calculating the static image 

descriptors which are described in the subsequent sections.  
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(a) 

 

(b) 
 

Figure 11: A subset of binary output images from the PCNN (a) and that output is superimposed on the original 
image (b). 

 

 

 
 

Figure 12: The first three iterations of the binary output of the PCNN from Figure 11 are summed to define the 
regions of interest. 
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Figure 13: The lumen region is selected from the image in Figure 12. 

 

 
 

Figure 14: The perimeter of the region in Figure 13 is segmented. 
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Figure 15: The estimated location of the lumen border superimposed on the original image. 

 

3.6 Static Image Descriptors 

The static descriptors computed are the lumen circularity, lumen centroid displacement, 

the area difference between the smallest enclosing circle and the lumen border, and the 

fractal dimension of the lumen border.  The descriptors were computed for each 

individual image slice. 

 

 
 

Figure 16: Perimeter calculation 

0.17)7235(95. =´++´= diagonalhorizontalverticalperimeter  
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3.6.1 Circularity 

The first descriptor calculates the lumen border perimeter and the area of the lumen to 

form an estimate of circularity.  As illustrated in Figure 16, the perimeter measurement is 

estimated by the length of the outer contour of the connected region R.  Each segment 

measures the distance from one pixel center to an adjoining pixel center.  The 

measurement estimates vertical and horizontal segments as 1 unit and diagonal segments 

by 2  units.  Since this method of calculation has been generally found to overestimate 

the real perimeter, a correction factor of 0.95 is applied as recommended in [36].  The 

area estimation is a simple count of the image pixels that comprise the region R.  

Circularity can be approximated from the perimeter and the area as a measure of 

compactness or roundness which is invariant to translation, rotation, or scale factors: 

)(
)(

4)(
2 RPerimeter

RArea
RyCircularit ´= p  

Circularity is 1 for a perfectly round region and ranges from [0, 1) for all other shapes 

[36].   

 

3.6.2 Centroid Displacement 

The second descriptor considered was the distance between the centroid of the lumen and 

the center of the best circle fit to the lumen outline, expressed as a fraction of the radius.  

A preliminary feasibility study explored using a Hough circle transform to calculate the 

circle.  The Hough circle transform is potentially robust even under conditions which 

occlude parts of an image boundary as illustrated in Figure 17.  This is in contrast to the 

centroid which can be moved away from its central position by defects or boundary 

occlusions [37].  The Hough transform creates a set of candidate points for the center of a 

circle (or circles), given a radius value (or range of values), by moving along the local 

normal vector for each point on the perimeter.   The location(s) containing the largest 

number of accumulated candidate points defines the center of the best fit circle(s).  In 

practice, for this application, the Hough transform did not provide a consistent reference 

to the center of an artery because the radius value was variable and the circle was not 

constrained to contain all of the points of the lumen border.  As illustrated in Figure 18, 

the Hough circles did not consistently outline an artery to distinguish the areas of 
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potential plaque.  Ultimately, the smallest enclosing circle containing the lumen area 

proved to be a more reliable estimate of the arterial center.  

 

 
Figure 17: The Hough circle center estimated from candidate center points. 

 

 
 

 
 

                                      (a) non-plaque   (b) borderline   (c) plaque 

Figure 18: The Hough circles outlined in green (top row) compared to the smallest enclosing circle (bottom row). 

 
This constructed enclosing circle is compared to the Hough circles in Figure 18 and is 

illustrated in detail in Figure 19.  As described by Schneider and Eberly [38], the 

algorithm used to determine the minimum area circle begins with a circle that contains 

two input points and “grows” a circle that contains all of the points.  After constructing a 

circle with the first two support points, all additional points must be tested for inclusion 

in the circle.  If all of the points are contained, the minimum area circle has been found.  

Otherwise, the first non-contained point is added to the list of support points and all 
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circles that can be constructed from the combinations of two or three support points must 

be found.  The selected “grown” circle is the minimum area circle that has been 

constructed which contains all of the old supporting points.  This circle is then tested to 

see if it contains all of the input points.  Again if all of the additional points are contained, 

the minimum area circle has been found.  If not, any previous supporting points which 

are now interior points must be removed from the support list and the algorithm must be 

restarted.   

 

The center of this enclosing circle was then used in the second descriptor to estimate the 

difference between the center of the artery and the centroid of the lumen.   

 

 
 

Figure 19: The estimated perimeter of the lumen is shown in magenta with the smallest enclosing circle 
highlighted in white.  The blue pixels directly intersect the circle border. 

 

3.6.3 Area Difference 

The enclosing circle, calculated for the centroid displacement descriptor and illustrated in 

Figure 19, was also used to estimate the occlusion of the artery by calculating the 

percentage difference between the calculated lumen area and the area of the smallest 

enclosing circle. 



 25

3.6.4 Fractal Dimension 

The final static descriptor is the fractal dimension as described by Nguyen and 

Rangayyan [21] which quantifies the complexity of the lumen boundary.  The fractal 

dimension was calculated using the box-counting method.  For the case of the lumen 

perimeter, the method partitions the image into a grid of squares of equal size and counts 

the number of squares that contain at least one perimeter pixel as illustrated in Figure 20.  

Grid size is then varied from one square pixel to 64 square pixels.  The fractal dimension 

is estimated by the slope of the line found for a linear regression of the log of the number 

of boxes containing lumen border pixels and the log of the magnification index for each 

box-partitioning stage.  Figure 21 is a graph showing the estimate of fractal dimension for 

the image in Figure 20.  

 
 

Figure 20: For this grid size, 20 boxes contain perimeter pixels. 

 

 
Figure 21: The slope of the line estimates the fractal dimension of the perimeter outline shown in Figure 20. 
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3.7 Time Series Descriptors 

As in the studies by Galante et al and by Stefanadis et al [22] [23], an alternative to static 

image descriptors is an estimate of the elastic properties of the aorta using images 

obtained throughout the cardiac cycle.  These descriptors are calculated for the series in 

the study which contain slices acquired at 0% and 40% gating, expressed as a fraction of 

the R-R interval in the cardiac cycle.  The difference in the centroid values is calculated 

as a measure of asymmetry in aortic expansion.  In addition, the percentage change in the 

area of the lumen at systole and diastole is used to estimate a measure of distensibility.  

 

4. ASSESSMENT 

The static descriptors compared in this study are the circularity of the lumen outline, the 

distance between the centroid of the lumen and the center of the smallest enclosing circle, 

the area difference between the smallest enclosing circle and the lumen, and the fractal 

dimension of the lumen outline.  In addition, dynamic descriptors include the dispersion 

of the centroid values and the percentage change between the area of the lumen at systole 

and diastole which are evaluated for studies having the time series data available.  The 

descriptors are evaluated for their ability to identify slices which contain potential areas 

of plaque.   

 

A “gold standard” is defined as the true disease status, measured without error.  It may be 

defined from clinical follow-up, surgical validation, or autopsy [39].  In the absence of an 

available, non-invasive “gold standard”, and consistent with other studies [19] [20] [23], 

the descriptors for this study are assessed against the evaluation of domain experts.  As 

illustrated in Figure 22, two cardiologists evaluated each slice and identified it as either 

containing visible indications of plaque, or as normal, or they declined to classify the 

slice.  For example, the slice image in Figure 22(b) shows two indications of plaque, both 

soft plaque distorting the arterial border and calcification indicated by the higher intensity 

pixels on the lower right aorta border.    
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(a) Plaque (b) Calcified plaque (c) Normal (d) Not classified  
Figure 22: Expert slice identification. 

 

To minimize assessment error, this study is restricted to images classified identically by 

two cardiologists.  The resulting set of classified images is designated as the “reference 

set” for the balance of this thesis.    

 

The assessment tools used for this thesis include Receiver Operating Characteristic 

curves, accuracy measurements, and logistic regression analysis.  These are elaborated in 

the following sections. 

 



 28

4.1 Classification of Possible Outcomes 

The descriptors have been calculated from classification models that map each slice 

instance to a continuous value.  A threshold can then be applied to this value to predict 

membership in the plaque or non-plaque classes.  For each descriptor and slice instance 

value, there are four possible outcome combinations as shown in Figure 23.  This matrix 

of possible outcomes is referred to as a confusion matrix or a contingency table [40].   

 

          

   

True Class  
   

   plaque 
non -

plaque   

Predicted 
Class  

plaque true positive false positive   
non -

plaque 
false negative true negative 

  
       
       
          

 

Figure 23: Confusion matrix of possible outcomes for each discrimination threshold. 

 

The true positive rate or sensitivity of a test can be estimated by: 

positivestotal
positivestrue

ratepositivetrue =  

 

The specificity of a test is also called the true negative rate.  The false positive or false 

alarm rate is equal to (1-specificity) and is estimated by: 

negativestotal
positivesfalse

ratepositivefalse =  
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4.2 Receiver Operating Characteristic Curves 

One method that this thesis uses to report results is the Receiver Operating Characteristic 

(ROC) curve which characterizes their respective sensitivity and specificity.  The area 

under the ROC curve is estimated to assess the potential of each descriptor [41]. 

 

As illustrated in Figure 24, the ROC graph illustrates the tradeoff between the true 

positive rate and the false positive rate of a classifier or descriptor.  The ROC graph is a 

plot of the true positive rate on the y-axis against the false positive rate on the x-axis as 

the discrimination threshold for the descriptor values varies from ¥-   to ¥+ .  In ROC 

space, the point (0, 0) is the state of never classifying an instance as positive and 

therefore has no chance of a false positive error.  The point (1, 1) unconditionally 

classifies all instances as positive so all negatives will be classified incorrectly as false 

positives.  The diagonal line represents a classifier that has no more information than 

randomly guessing a class.  The point (0, 1) represents a perfect classifier.  Intuitively, a 

classifier point is better if it is closer to the (0, 1) corner which means that either the true 

positive rate is higher, the false positive rate is lower, or both.  By varying the classifier 

threshold for the continuous values that are produced by the descriptors, a curve (step-

function) in the ROC space is produced [40].   
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Figure 24: ROC Curve. 

 
One positive property of a ROC curve is that if the proportion of positive to negative 

instances changes in a test set, the curve will not change since it depends only on the true 

positive and false positive rates [40].   

 

Since a successful classifier will produce relative scores or values to discriminate normal 

and abnormal instances of the test outcome [40], the area under an ROC curve (AUC) 

will vary from .5 which indicates no predictive value to 1.0 representing perfect accuracy.  

The area measures the probability that in a random pair consisting of a normal and an 

abnormal image, the descriptor will allow them to be correctly ranked or identified [42].   

 

The following labels, which have been suggested for the evaluation a classification model 

based on the area under a ROC curve [43], will be used in this thesis as one description of 

the classifiers: 

�  0.50 to 0.75 = fair 

�  0.75 to 0.92 = good 

�  0.92 to 0.97 = very good 

�  0.97 to 1.00 = excellent 
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Although the area under the curve will be considered in this study as a guide to the 

performance of the descriptors, it is not a guaranteed answer.  It is possible for a curve 

with a higher AUC to perform worse within a specific region of the ROC space, so 

classifier evaluation must consider the desired target sensitivity levels as well as error 

costs.  Classifier thresholds which produce points on the left-hand side of the ROC space 

are “conservative” in that they will classify an instance as positive only with strong 

evidence so there will be very few false positive errors.  In the upper right area of ROC 

space, classifiers can be considered more “liberal” since they will make a positive 

classification on weaker evidence.  This means that they may be able to identify close to 

all positive instances correctly at the expense of a high false positive rate [40].  To set the 

appropriate threshold value for a decision threshold, knowledge of the error costs and the 

prevalence of the disease must be considered.   

 

4.3 Accuracy 

Evaluating the accuracy of a descriptor can provide additional insight into selecting a 

decision threshold value [44].  The accuracy of a descriptor is based on the percentage of 

correct classifications in the study: 

 

negativespositives
negativestruepositivestrue

accuracy
+
+

=  [40]. 

 

The accuracy of each descriptor is evaluated and graphed to illustrate the variation based 

on the threshold value and the point of maximum accuracy is shown on the ROC curve 

graphs for each descriptor.  
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4.4 Regression Models 

A linear regression model is not appropriate for this project.  Since the dependent 

variable can be expressed by the categorical values zero and one, the assumption of 

common variance in linear regression is not valid.  In addition, a linear model could 

predict values of the dependent variable that were less than zero or greater than one.  

Since linear regression models do not apply, logistic regression models were fit for each 

of the static descriptors and for combinations of the descriptors to evaluate the potential 

benefit of using multiple descriptors [45] [46]. 

 

The first step in defining a logistic regression model is to encode the dependent variable.  

In this case a variable,p , is defined as the ratio of images classified as plaque at a 

descriptor threshold value to total plaque images, where � 	 
 	 � .  Next, a threshold 

odds ratio, 
 �� � 
�� � is computed.  This ratio varies from zero to positive infinity.  The 

transformation from the odds ratio to the log odds, also called the logit function, maps the 

values from negative infinity to positive infinity.  It also has the symmetric property that 

the log odds of being plaque are the opposite of the log odds of being non-plaque [46]:  

)
1

(log)
1

(log
p

p
p

p -
-=

- ee  

 

The logistic regression for a single descriptor is: 
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p

p
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-
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or more generally for the multiple logistic regression: 
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1

(log 2211 +++=
-

xxe bba
p
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In this thesis, the model parameters were fit using the maximum likelihood loss function 

which maximizes the conditional probability of the data given the model parameters [45] 

[47].  An example graph for the circularity descriptor model is shown in Figure 25.   
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Figure 25: The log odds compared to the regression estimate based on the circularity descriptor. 

 

 
 

Figure 26: Exponentiation of the log odds to yield the odds ratio at each level. 

 
The p-value for each descriptor is used to test for evidence of a relationship between the 

predictor and the response variable.  The null hypothesis asserts that there is no change in 

the odds ratio based on the predictor variable.  The estimated coefficient of an 
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independent variable is the estimated change in the log odds for each unit change in the 

predictor, so exponentiation estimates the odds ratio at each threshold level as shown in 

Figure 26.  An estimated coefficient of zero yields an odds ratio of one; and therefore, it 

implies that the probability of “plaque” is equal to the probability of “not plaque” so that 

the variable has no effect [45]. 

 

Solving to estimate the probability � , the ratio of plaque images classified at a descriptor 

threshold value to total plaque images, yields: 

 


 �
����� � � � ����������� � �

� � ����� � � � ����������� � �
 

 

which is shown in Figure 27.   

 

 
 

Figure 27: The probability of plaque estimated based on the circularity descriptor. 

 

In addition to the logistic regression model parameters, Minitab was used to produce a 

table of measures of association between the response variable and predicted 

probabilities.  The tabulation of concordant and discordant pairs examines the 
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relationship between each possible pair of plaque and non-plaque slices and indicates 

whether the image slice with the plaque has a higher predicted probability of plaque.  The 

percentage of concordant pairs is equivalent to the area under the ROC curve [45] which 

measures the probability that in a random pair consisting of a normal and an abnormal 

image, the descriptor will allow them to be correctly ranked or identified [42].   

 

The Goodman-Kruskal gamma further evaluates the association between the variables by 

calculating the difference between the probability of getting a concordant pair and that of 

getting a discordant pair: 

)()(
)()(

discordantPconcordantP
discordantPconcordantP

+
-

=g  

. 
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circularity area difference centroid displacement fractal dimension
0.9554 13.33% 5.13% 0.963

circularity area difference centroid displacement fractal dimension
0.9540 10.90% 3.75% 0.944

Slices classified with indications of plaque:

 

Figure 28: Samples and descriptor values for images slices classified with indications of plaque. 

 

4.5 Slice Classification Examples  

As stated earlier, the reported results are based on images for which two experts made 

identical determinations on the presence or absence of visible plaque indications.  This 

section illustrates examples of slice classifications and the outer border of the lumen 

region calculated using this defined methodology. 

 

Figure 28 displays two images assessed as having indications of plaque, and Figure 29 

shows two image samples classified as normal.  The leftmost image is the original CT 

image which the experts evaluated.  The second image shows the computed perimeter 

outline superimposed on the original image.  In the third frame, the estimated perimeter 

of the lumen is shown in red, and the smallest enclosing circle is highlighted in white.  

The calculated descriptors for the image slices are shown in the figures for comparison. 
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circularity area difference centroid displacement fractal dimension
0.9630 6.90% 1.77% 0.945

circularity area difference centroid displacement fractal dimension
0.9745 5.67% 1.00% 0.859

Slices classified as normal:

 
 

Figure 29: Samples and descriptor values for image slices classified as having no visible indications of plaque. 

 

In addition, there was a small group of slices that the experts declined to classify based 

on their visual inspection.  Examples of these slices are illustrated in Figure 30 and were 

not included in the classification statistics for the study.  

 
In some image slices, there were vessel branches or other structures which had HU values 

similar to that of the lumen.   In these cases, the resulting binary output regions were 

connected by one or more pixels which prevented the automated separation using the 

PCNN output.  Figure 31 illustrates examples of these images and the perimeters and 

areas that were eliminated from consideration because of this problem. 
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circularity area difference centroid displacement fractal dimension
0.9887 4.33% 1.48% 0.911

circularity area difference centroid displacement fractal dimension
0.9587 7.47% 3.43% 0.916

Slices not classified:

 

Figure 30: Samples and descriptor values for image slices not classified. 

 
 

(a) 

(b) 

Slices not included because of limitations of segme ntation:

 

Figure 31: Samples of images slices in which a vessel branch (a) or another structure (b) prevents automated 
segmentation using the PCNN region output. 
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5. STATIC DESCRIPTOR RESULTS 

5.1 Circularity 

The histograms in Figure 32 tabulate the values for the circularity of the lumen perimeter.  

Figure 32(a) displays the slice counts for each histogram interval for circularity values 

from the reference set.  Figure 32(b) presents the classifications as a percentage of the 

total number of slices in each circularity interval.  As hypothesized, the circularity values 

for slices which were not classified as having visible indications of plaque were, for the 

most part, closer to one although there is not an absolute separation.   

 

The ROC curve for circularity is shown in Figure 33.  The area under the ROC curve is 

0.94 which is in the range rated as a very good classifier (0.92 to 0.97).  At the point of 

the highest accuracy, shown at the yellow triangle, approximately 60% of the positive 

slices were classified correctly with a circularity descriptor threshold of .92.  This 

threshold resulted in approximately 4% false positives.  To reach 90% of the slices 

containing indications of plaque, the threshold would need to be increased to .96 at an 

associated cost of almost 20% false positive identification. 
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(a) 

 

(b) 

Figure 32: Circularity values for 802 image slices: 600 non-plaque, 168 plaque, and 34 unclassified. 
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Figure 33: ROC curve for circularity. 

 

ROC Curve - Circularity

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0.000 0.200 0.400 0.600 0.800 1.000

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

ROC curve diagonal maximum accuracy true positive 90%



 42

5.2 Centroid Displacement 

The histograms in Figure 34 show the values for the percent difference between the best 

estimate of the center of the artery and the centroid of the lumen.  Figure 34(a) displays 

the slice counts for each interval of centroid displacement values.  Figure 34(b) shows the 

classifications for the reference set as percentage of the total slices for each range of 

values.  As predicted, the displacement values for slices which had visible indications of 

plaque were higher.   

 

The ROC curve for the centroid displacement is shown in Figure 35.  The area under the 

curve is 0.77 which is at the low end of the range of 0.75 to 0.92, rated as a good 

classifier.  While rated by the reference description [45] as good, at the point of the 

highest accuracy shown at the yellow triangle, only 43% of the positive slices were 

classified correctly by the descriptor using a threshold of 4.7%.  At this threshold level, 

approximately 6% of the normal slices were classified as false positives.  To reach the 

level of identifying 90% of the slices containing indications of plaque, the threshold 

would need to be changed to 1.9% with a significant increase in the associated cost of 

almost 60% false positive identification. 
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(a) 

 

(b) 

Figure 34: Percent difference values for the best estimate of the center of the artery and the centroid of the 
lumen for 802 image slices: 600 non-plaque, 168 plaque, and 34 unclassified. 
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Figure 35: ROC curve for centroid displacement. 
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5.3 Area Difference 

The histograms in Figure 36 show the percentage difference in area between the lumen 

and the smallest enclosing circle containing the lumen.  Figure 36(a) displays the slice 

counts for the reference set in each interval of area difference values.  Figure 36(b) 

displays the slice classifications as a percentage of the total slices in each interval.  For 

the most part, the area difference values for slices with visible indications of plaque were 

higher reflecting the displacement of the lumen area.   

 

The ROC curve for the area difference is shown in Figure 37.  The area under the curve is 

0.96 which is in the range of 0.92 to 0.97 rated as a very good classifier.  At the point of 

the highest accuracy, shown at the yellow triangle, approximately 83% of the positive 

slices were classified correctly by the descriptor using a threshold of 9.4%.  At this 

threshold level, between 7% and 8% of the normal slices were classified as false 

positives.  To reach the level of identifying 90% of the slices containing indications of 

plaque, the threshold would need to be changed to 8.4% with a corresponding increase to 

almost 15% false positive identification. 
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(a) 

 

(b) 

Figure 36: Percent difference in area between the lumen and the smallest enclosing circle containing the lumen 
for 768 image slices: 600 non-plaque, 168 plaque, and 34 unclassified. 

 

Area DIfference

0

20

40

60

80

100

120

0% 2% 4% 6% 8% 10
%

12
%

14
%

16
%

18
%

20
%

percent area difference

nu
m

be
r 

of
 s

lic
es

non-plaque

plaque

unclassified

Area DIfference

0%

20%

40%

60%

80%

100%

0% 2% 4% 6% 8% 10
%

12
%

14
%

16
%

18
%

20
%

percent area difference

nu
m

be
r 

of
 s

lic
es

unclassified

plaque

non-plaque



 47

      
 

Figure 37: ROC curve for area difference. 
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5.4 Fractal Dimension 

The histograms in Figure 38 show the fractal dimension of the perimeter of the lumen.  

The values for slices which did not have visible plaque indications were generally lower 

which would be a sign of a less complex surface perimeter.  Figure 38(a) shows the slice 

counts for each interval of the fractal dimension values.  Figure 38(b) illustrates the slice 

classifications for the reference set as a percentage of the total slices in each range of 

values.   

 

The ROC curve for fractal dimension is shown in Figure 39.  The area under the curve is 

0.67 which is in the range of 0.50 to 0.75 rated as only a fair classifier. The point of the 

highest accuracy of the fractal dimension classifier was 79%, shown at the yellow 

triangle.  This point would not be considered a reasonable classification since only 2% to 

3% of the true positives were identified at this threshold.  To reach the level of 

identifying 90% of the slices containing indications of plaque, the associated cost rises to 

over 70% false positive identification.  To reach even a 75% true positive rate, the false 

positive rate is over 40%. 
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(a) 

(b) 

Figure 38: Fractal dimension of the lumen perimeter for 802 image slices: 600 non-plaque, 168 plaque, and 34 
unclassified. 
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Figure 39: ROC curve for fractal dimension. 
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5.5 Comparison of the Static Descriptors 

All of the descriptors have some merit in adding information about the classification of 

the slices.  Figure 40 shows the ROC curves for the static descriptors plotted on the same 

graph.  Table 4 summarizes the area of the ROC space under each classifier curve.  Of 

particular note is the area difference between the lumen and the smallest enclosing circle 

that contains all of the perimeter points of the lumen region.  This descriptor was able to 

best discriminate the slices in agreement with the gold standard classification of plaque or 

no plaque indications.  The area difference descriptor was less sensitive to image noise at 

the lumen edges, a more noticeable factor in the calculation of circularity and fractal 

dimension. 

 

 
 

Figure 40: ROC Curves for all static descriptors. 
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Table 4: Classifier Comparison by Area under ROC Curve 

Descriptor 
Area Under Curve 

(AUC) SE(AUC) Classifier Rating 
Circularity 0.94 0.01 0.92 to 0.97 = very good 

Centroid Displacement 0.80 0.02 0.75 to 0.92 = good 
Area Difference 0.96 0.01 0.92 to 0.97 = very good 

Fractal Dimension 0.67 0.02 0.75 to 0.92 = good 
 
 

5.7 Accuracy of the Static Descriptors 

A further comparison of the descriptors is shown in Table 5 with the maximum accuracy 

level that they were able to achieve.  Table 5 also breaks down the maximum accuracy 

figure to reflect both the numbers of true positives and true negatives that the descriptors 

could classify.   

 

Again, the area difference was the strongest performer.  As shown in Table 5, the 

maximum accuracy for the area difference descriptor is .91 which occurs for a threshold 

of 9.4%.  At this threshold 141 of 168 true positive (plaque) images are classified as well 

as 555 of 600 true negative (non-plaque) image classifications.  Figure 41 through Figure 

44 illustrate how the accuracy values vary as the thresholds are adjusted for each 

descriptor.   

 
  

Table 5: Accuracy Comparison 

Descriptor 
Maximum 
Accuracy 

# True 
Positives 

# True 
Negatives TP + TN 

Circularity 0.88 101 575 676 
Centroid Displacement 0.83 72 564 636 

Area Difference 0.91 141 555 696 
Fractal Dimension 0.79 6 598 604 

     
note: 768 total cases     
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Figure 41: Accuracy of the circularity descriptor as the threshold varies. 

 
 

Figure 42: Accuracy of the centroid displacement descriptor as the threshold varies. 
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Figure 43: Accuracy of the area difference descriptor as the threshold varies. 

 

 
 

Figure 44: Accuracy of the fractal dimension descriptor as the threshold varies. 
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6. DYNAMIC DESCRIPTOR RESULTS 

The time series results discussed below measure differences observed between slices 

acquired at the 0% and 40% increments in the R-R interval of the cardiac cycle.  Only 

one of the eight studies considered for the static descriptors had the data available for the 

time series analysis.  These preliminary results are based on a much smaller number of 

image slices from one patient.   

 

6.1 Centroid Dispersion 

The centroid dispersion values are shown in the histograms in Figure 45.  The difference 

in the centroid values in slices acquired at 0% and 40% increments in the R-R interval is 

calculated as a measure of asymmetry in aortic expansion.  Figure 45(a) displays the slice 

counts in each interval for the reference set.  Figure 45(b) presents the classifications as a 

percentage of the total number of slices in each interval.   

 

The ROC curve for the centroid difference is shown in Figure 46.  The area under the 

curve is 0.61 which is in the lower part of the range of 0.50 to 0.75 rated as a fair 

classifier.   If the threshold is set lower than approximately 2%, the level at which 75% of 

the true positives are identified, the curve for the centroid difference descriptor falls 

below the diagonal line indicating a performance worse than random chance. 
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(a) 

 

(b) 

Figure 45: Percentage change in the position of the lumen centroid at 0% to 40% of the R-R interval for 97 
image slices: 25 non-plaque, 70 plaque, and 2 unclassified. 
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Figure 46: ROC Curve for centroid displacement. 
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The percentage change in the area of the lumen at 0% and 40% of the R-R interval in the 

cardiac cycle was calculated as an indication of vessel elasticity.  The slice counts for 

each interval are shown in Figure 47(a) and the percentage of slices in each interval is 

shown in Figure 47(b).  The ROC curve for the area difference is shown in Figure 48.  

The area under the curve is 0.68 which is in the range of 0.50 to 0.75 rated as a fair 

classifier.    
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(a) 

 

(b) 

Figure 47: Percentage change in the area of the lumen at 0% to 40% of the R-R interval for 97 image slices: 25 
non-plaque, 70 plaque, and 2 unclassified. 
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Figure 48: ROC Curve for area difference. 
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Figure 49 shows a comparison of the ROC curves for the time series descriptors.  At 
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the strength of any conclusion that would be drawn. 
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Figure 49: ROC Curves for time series descriptors. 

 
 

Table 6: Classifier Comparison by Area under ROC Curve 

Descriptor Area Under Curve (AUC) SE(AUC) Classifier Rating
Centroid Difference 0.61 0.06    0.50 to 0.75 = fair

Area Difference 0.68 0.06    0.50 to 0.75 = fair
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7. DISCUSSION 

Since the area difference descriptor outperformed all of the other classification models, 

with an AUC of 0.96 which is considered to be in the “very good” [45] or “excellent” 

[41] rating category, this section will look more closely at the strengths and weaknesses 

of this descriptor. 

 

The point on the ROC curve that corresponds to the maximum accuracy point is shown in 

yellow in Figure 50.  That threshold of 9.4% identifies 84% of the true positive images 

with a cost of misclassifying 8% false positive images.  As an example, if it was a 

requirement of this test to identify 90% of the positive images, the threshold could be 

moved to the point shown in green in Figure 50.  The threshold which produces this point 

is approximately 8.4%.  It identifies 152 (90%) true positive images at a cost of 

misclassifying 89 (15%) false positives. 
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Figure 50: Accuracy measurements for the area difference descriptor. 
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7.1 Misclassification 

At the threshold level that identifies 90% of the positive image slices, the 10% of images 

which are classified as false negatives by the area difference descriptor are highlighted in 

Figure 51.  Figure 52 illustrates those false negatives which were below the 8.4% 

threshold for the area difference descriptor.  Many of these slices contain an area visually 

identified as calcified plaque but which doesn’t occlude a large area of the lumen.  It can 

also be observed that the majority of these slices would have been correctly identified by 

the circularity descriptor at the threshold level which identified 90% of the positive slices.  

 

 
 

Figure 51: The red oval highlights the area of false negative slices. 
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 slice identification circularity area difference
centroid 

displacement
fractal 

dimension

A3_P75_00010199.tif 0.9380 5.7% 1.3% 0.904

A3_P75_00010198.tif 0.9722 5.9% 3.2% 0.904

A3_P75_00010194.tif 0.9870 5.9% 1.9% 0.900

GJO_P75_00010110.tif 0.8955 6.3% 0.2% 0.967

A3_P75_00010100.tif 0.9493 6.6% 5.0% 0.930

A3_P75_00010128.tif 0.9438 6.7% 2.9% 0.980

 
 

 (Continued on next page) 
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 slice identification circularity area difference
centroid 

displacement
fractal 

dimension

GJO_P75_00010108.tif 0.9069 7.1% 0.6% 0.922

A3_P75_00010134.tif 0.9201 7.4% 4.2% 0.979

GJO_P75_00010219.tif 0.9147 7.6% 4.6% 0.932

A3_P75_00010096.tif 0.9300 7.6% 2.6% 0.980

KD_P75_00010148.tif 0.8788 7.7% 1.7% 0.969

A1_P75_00010173.tif 0.9537 8.0% 1.9% 0.943

 
 

 (Continued on next page) 
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 slice identification circularity area difference
centroid 

displacement
fractal 

dimension

KD_P75_00010149.tif 0.8323 8.0% 0.9% 0.970

A3_P75_00010087.tif 0.9168 8.1% 1.3% 0.901

GJO_P75_00010153.tif 0.9173 8.3% 2.7% 1.006

 
 

Figure 52: Image slices classified by physicians as having visual indications of plaque that would not be correctly 
classified by area difference descriptor. 
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At the opposite end of the ROC curve are the slices in the normal classification of the 

reference set which are identified as false positive by the area difference descriptor.  

These normal slices fall into the intervals highlighted by the green oval in the histogram 

in Figure 53.  Figure 54 illustrates slices representative of the 15% of slices that would be 

identified as false positives.  Several of these slices have an oval shape which might 

indicate in that area of the CT scan, the slices of the aorta did not meet the assumption 

that the slices would be orthogonal.  Again in the case of these false positives, it is 

observed that many of these slices would have been correctly identified by the circularity 

descriptor. 

 

 

  
 

Figure 53: The green oval highlights the area of false positive slices. 
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 slice identification circularity area difference
centroid 

displacement
fractal 

dimension

FC_P75_00010207.tif 0.9556 14.5% 7.4% 0.980

FC_P75_00010205.tif 0.9688 14.4% 5.0% 0.984

FC_P75_00010206.tif 0.9656 14.0% 6.2% 0.985

FC_P75_00010204.tif 0.9862 13.3% 4.8% 0.983

BE_P75_00010112.tif 0.9847 13.1% 4.5% 0.915

A4_P75_00010006.tif 0.9563 13.0% 3.6% 0.946

 
 

 (Continued on next page) 
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 slice identification circularity area difference
centroid 

displacement
fractal 

dimension

BE_P75_00010207.tif 0.9827 12.6% 1.8% 0.894

BE_P75_00010209.tif 0.9884 11.9% 1.7% 0.941

BE_P75_00010208.tif 0.9876 11.8% 3.0% 0.931

BE_P75_00010210.tif 1.0042 11.7% 3.8% 0.937

BE_P75_00010113.tif 0.9918 11.6% 5.2% 0.924

FC_P75_00010116.tif 0.9466 11.5% 3.8% 0.882

 
 

 (Continued on next page) 
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 slice identification circularity area difference
centroid 

displacement
fractal 

dimension

A1_P75_00010018.tif 0.9678 11.5% 2.3% 0.937

A1_P75_00010087.tif 0.9073 11.3% 5.2% 0.942

BE_P75_00010000.tif 0.9853 11.2% 4.2% 0.913

A1_P75_00010191.tif 0.9754 11.0% 0.4% 0.956

BE_P75_00010212.tif 0.9894 10.9% 5.6% 0.930

BE_P75_00010228.tif 0.9910 10.9% 2.6% 0.877

 
 

Figure 54: Image slices classified by physicians as having no visual indications of plaque that would not be 
correctly classified by area difference descriptor. 
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7.2 Combining the Descriptors 

In the previous section, images which were misclassified by the area difference descriptor 

were presented.  For many of these images, an alternate descriptor would have yielded 

the correct classification.  Table 7 summarizes the results of fitting a logistic regression 

model [42] with each descriptor as the independent (predictor) variable and the reference 

classification (plaque = 1, non-plaque = 0) as the response variable. 

 

From the output, p-values of less than 0.05 indicate that there is evidence of a 

relationship between each individual predictor and the response variable.  The 

measurement of the concordant pairs is comparable to the estimated areas under the ROC 

curves.  The measurement of the Goodman-Kruskal Gamma also indicates that the area 

difference descriptor has the best individual predictive ability. 

 
 

Table 7: Individual Logistic Regression Results 

Descriptor p-value Concordant Pairs % Discordant Pairs % Goodman Kruskal �
Circularity 0.00 93.4% 6.5% 0.87

Centroid Displacement 0.00 79.4% 20.2% 0.59
Area Difference 0.00 94.6% 5.3% 0.89

Fractal Dimension 0.00 67.1% 32.3% 0.35

 

 

Since the logistic regression statistics indicated that each of the descriptors had merit in 

predicting the response variable, the first step in fitting the multiple logistic regression 

model included all four descriptors.  The results are summarized in Table 8. 

 

Table 8: Multiple Logistic Regression Result 

Descriptor Coefficient p-value Concordant Pairs % Discordant Pairs % Goodman Kruskal �
Constant 17.4 0.008
Circularity -34.4 0.000

Centroid Displacement 15.7 0.103
Area Difference 70.6 0.000

Fractal Dimension 7.8 0.098

97.2% 2.8% 0.94

 

In this case, the p-values for the circularity and the area difference descriptors indicate 

that there is evidence of a relationship between these predictors and the response variable.  
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Since the p-values for the centroid displacement and the fractal dimension are above 

0.05, a reduced model should be considered.  These models are summarized in Table 9.  

Both three-variable models indicate that circularity and area difference are the only two 

descriptors that are significant in this combined model.  The p-values for centroid 

displacement and fractal dimension indicate that there is not sufficient evidence of a 

relationship between these predictors and the response variable.  The concordant pairs 

and the Goodman-Kruskal gamma indicate that the simpler two-variable model has equal 

predictive ability.  The percentage of concordant pairs indicates that the two-variable 

model is the best predictor of the response variable in this study. 

 
 

Table 9: Reduced Multiple Logistic Regression Models 

Descriptor Coefficient p-value Concordant Pairs % Discordant Pairs % Goodman Kruskal �

Constant 25.9 0.000
Circularity -35.6 0.000

Area Difference 70.6 0.000
Centroid Displacement 13.8 0.157

Constant 18.1 0.000
Circularity -33.9 0.000

Area Difference 75 0.000
Fractal Dimension 6.8 0.149

Constant 25.6 0.000
Circularity -35.1 0.000

Area Difference 74.7 0.000

97.1% 2.8% 0.94

Two predictors

97.1% 2.9% 0.94

Three predictors

97.1% 2.9% 0.94

Three predictors
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8. FUTURE WORK 

The images for this thesis were obtained from a limited number of cardiac CT studies and 

their geometric features were exploited to produce a binary classification of those slices 

exhibiting evidence of plaque as determined by medical experts.  Validating this work by 

actual plaque measurements through technologies such as intravascular ultrasound 

(IVUS) could provide a more accurate, continuous scale of plaque involvement to 

evaluate the potential of each image descriptor.    It could also be instructive to evaluate 

the effect of additional information such as patient age or sex on descriptor performance. 

      

While this study focused on the features of the lumen border as a two-dimensional object, 

further information about the characteristics of plaque deposits might be obtained by 

developing descriptors that incorporate volume information by considering the 

neighboring slice geometry as outlined in the studies of Kurkure, Avila-Montes, and 

Kakadiaris [19] and Renard and Yang [20].  For example, a change in a descriptor value 

along the length of the aorta could also be an indication of an area of interest. 

 

The evaluation of the time series descriptors was limited to a small amount of available 

data.  The potential in estimating elastic properties from the image sequences merits 

further study.  Elasticity is also an area where descriptors might be greatly influenced by 

the age of the patient in addition to any plaque burden that is present.   

 

Finally, while this project focused on contrast-enhanced CT images, the techniques 

developed in this analysis may be applicable to MRI images of the aorta.  Identifying 

plaque in MRI slices would be a significant improvement since MRI images are acquired 

without the use of ionizing radiation.   
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9. SUMMARY  

This thesis compared morphological features from CT cross-sectional images of the 

aorta. Using an estimated outline of the lumen border, several static image descriptors 

were calculated and compared.  The border was also used as a basis to compare the 

elastic properties of the aorta as the border outline varied in time during the cardiac cycle.  

The project compared how well these descriptors are able to identify slices exhibiting 

evidence of plaque as determined by medical experts.    

 

All of the descriptors exhibited some evidence of predictive ability, but the strongest 

models were based on the area difference and the circularity.  Each of these descriptors 

showed individual strength with maximum accuracy levels near ninety percent and 

predictive probabilities estimated by the areas under the ROC curves in the range 

classified as very good.  Combining the strengths of these two predictors using a multiple 

logistic regression provided the strongest model. 
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