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ABSTRACT

This study compared the ability of six image descriptors, ctaraag the morphology
and elasticity of the descending aorta, to identify computed tomogr@phyimages
which contain visual indications of plaque. This thesis is basdtieohypothesis that
regions of plaque distort the normal lumen shape resulting in correspardinges in
the CT image. This, in turn, allows the inference of the presginglaque by identifying
deviations in the smoothness, symmetry, or circularity of the luivader or by
measurements that allow for an estimate of the elastic piegpef the arterial wall. The
project method included manually locating the descending amita & CT dataset,
segmenting the lumen in each candidate slice, and computingpti@scifrom the
resulting images. The descriptors computed are the lumen citgulamen centroid
displacement, the area difference between the smallest iagcloecle and the lumen
border, and the fractal dimension of the lumen border. In addition, tlenpege
expansion in lumen area and the dispersion of the lumen centroid evepared at the
0% and 40% gating in the R-R interval during the cardiac cycle.agsessment of the
ability of each descriptor to identify the image slices contairpotential plaque is
included. The descriptors were measured against a refesehoé images which were
visually classified by domain experts. While each of theutaled descriptors was
shown to have some merit, the circularity and the area diffetestwecen the smallest
enclosing circle and the lumen border demonstrated the best individi@ahperces in
discriminating between the plaque and non-plaque images. The ovetafirbdictive

model was found by combining the strengths of the two descriptors.



1. INTRODUCTION

Heart disease remains the leading cause of death in thed Btages, accounting for
approximately 26.6% of the 2,450,000 deaths in 2005 [1]. In addition, cerebrovascula
diseases such as stroke comprised an additional 5.9% [1]. Coroleayydisease is an
underlying factor in the majority of cardiovascular diseasescfde The condition of

the aorta is an indicator of vascular health. Specificallydiss have established that
atherosclerosis of the thoracic aorta is one predictor for Jemeraatherosclerosis;

coronary, carotid, and peripheral arterial disease [3].

1.1 Cardiovascular System

The cardiovascular system transports and distributes blood throughbottht deliver

materials such as oxygen and nutrients and to carry away washects. The blood
vessels form a closed transport system with the arteriegingablood away from the
heart. The large elastic arteries leave the heart apdohgbel blood. During ventricular
contraction, their elasticity acts to accommodate the surge of blubtelps to maintain

an even pressure [4].

The aorta is the largest elastic artery with a typicahdiar of 2-3 centimeters [4]. The
aorta is described by sections: the ascending aorta, the amftiicand the descending
aorta. As illustrated in the diagram shown in Figure 1, thenalicg aorta emerges from
the left ventricle of the heart with the coronary arteriesnidirang from it to supply the
heart muscle. The aorta curves to form the aortic arch whittte ifransverse segment
containing branches to supply the head, neck, and upper limbs. The aohtic a
completes an approximately 18turn at which point the aorta descends along the spine.
The descending portion is referred to as the thoracic aorta ab®wdgaffhragm and the

abdominal aorta below [4] [5].
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Figure 1: The sections of the aorta [6].

As shown in Figure 2, the wall of an artery has three tunit¢ayers; the tunica interna,
the tunica media, and the tunica externa. The interna or intima is the innee slofest
to the lumen, the hollow center through which blood flows. The in@ntains a lining
composed of a continuous layer of cells called the endothelium, the tidsch makes
contact with the blood [4]. It is surrounded by a sub-layer of adiveetissue interlaced
with circularly arranged elastic bands. The media is thekebkt layer made of elastic

fiber, connective tissues, and polysaccharide.

layer by another elastic layer. The outer layer, or advenstiaade of connective tissue

and contains nerves and capillaries.

It is sepanatedtiie third, outermost
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Figure 2: The layers of the artery wall [7].

1.2 Atherosclerosis
Arteriosclerosis is the thickening of the artery walls dralloss of elasticity. One form
of arteriosclerosis, atherosclerosis, is believed to begin witlagaro the endothelium.
Risk factors for atherosclerosis include:

elevated cholesterol and triglyceride levels in the blood

high blood pressure

smoking

diabetes [8]
Damaged sites collect fat, cholesterol, calcium, cellulastevgroducts, and other
substances found in the blood along the arterial wall as illustratédjure 3 [9]. This
buildup is called plaque, and it may thicken the endothelium signifyc8t The
severity of the atherosclerosis is often characterized bwrtimunt and structure of the
observed plaque. A plaque is generally defined as a protrusibe aftimal surface of

the vessel at least 2 mm thick which is different in appearfaogethe intimal surface.



Plaques less than 4mm are considered small while those greater than av dquai aire
classified as large or severe [10] [11]. Ulceration, a disdrelentation of the luminal
surface of the plaque with base width and maximum depth of atdemsh, can also
occur [11]. In addition, approximately 90% of patients with cardiovasalirase
exhibit vascular calcifications. These deposits of calcium dxydpatite, a natural
component found in bones and teeth, can diminish the wall elasticithwgt2ssary for

pressure regulation.

Litovchik et al described the strong relationship between coronamyticcaand aortic
calcification in studies including the study of Eisen et al dfigh risk population in
which 91% of patients had coronary calcification. Of thesemati@0% also had aortic

calcification [5].

Marrowed  Plague
artery

~

Figure 3: Plaque buildup causing narrowing of the aery lumen [9].



1.3 Computed Tomography

Computed tomograph§CT) has becoma mainstay of nomvasive imaging for vascul
anatomy and pathology anda common method for diagnosingscula disease [5]. In
a CT scan, an X-ragourct rotates around the target to producsetof cros-sectional
images, or slices [13 A subset of image slices from a cardiac €%&anis shown in
Figure 4. Thisseries of CT slice can be used toeconstruct a 3D model of the inter

structures aslustrated inFigure 5 [14].

Figure 4: Series of image slices from a cardiac CT scan.



Figure 5: 3D reconstruction of the cardiac region from theCT scan illustrated in Figure 4

In particular,this study is focused on individual slices selechexin the area of th

descending aorta as illustrated in the reconstrgti Figure 6.

Figure 6: 3D reconstruction of the section of the CT scanomtaining the aorta.



In addition to still or static volumes, CT scanners can acquireomatquences by
synchronizing, or gating, image acquisition to the cardiac cy€lese CT scanners are
typically gated as an offset referenced to the R-R intervahielectrocardiogram. The
cardiac cycle refers to the sequence of events relating faréksure and flow of blood
from the beginning of one heartbeat to the beginning of the nexthdwn in Figure 7,
one beat is generally measured from the peak of one R-wave, idatripventricular
(A-V) valve closes, to the peak of the next. Figure 7 alsonditest the changes in aortic
pressure during the cardiac cycle which form the basis for lde&ice descriptors

described later in this thesis.

Figure 7: A heartbeat is measured from the beginnig of the R-wave when the A-V valve closes at thedianing
of systole to the end of diastole [15].



The gating effectively divides the R-R interval into a number gimsats, usually
between 10 and 20. Each reconstructed CT volume relies on data obtamnédeal

offset in the cardiac cycle. For consistency, the staticrigéss in this study are all
based on the CT images taken at the 75% point in the cardias thal is, 75% of the
time of one heartbeat measured from the beginning of the R-wamethd-time series
descriptors, calculations are based on the differences betweiematles obtained at 0%

(the beginning of the R-wave) and 40 % of the cardiac cycle.

Tissue densities in CT images are recorded in terms of Holdhsfigts (HU). Ina CT
scan, an arbitrary unit of x-ray attenuation is assigned to &l on a scale in which
air has a value of 1000 HU; water, 0 HU; and compact bone, +1000M&lues for
Hounsfield Units are shown in Table 1 for representative tispes fj16]. The HU scale
is from —1,024 to +3,071, a 12-bit range or grayscale of 4,096 from jet(pla0R4 HU)
to pure white (3,071 HU).

Since soft plaque is substantially transparent to x-ray, a cbafast is used to allow
better visualization of plaque-related lumen displacement [12]. Stdmweeal compared
plague compositions in contrast enhanced CT scans with results founttdmpionary

ultrasound to define plaque density ranges as shown in Table 2 [17].

Table 1: Hounsfield Units for Representative Tissue Types

Tissue Hounsfield Units
Bone 1000
Liver 40 to 60

White Matter ~20to 30
Grey Matter ~37 to 45
Blood 40
Muscle 10 to 40
Kidney 30
Cerebrospinal Fluid 15
Water 0
Fat -50 to 00
Air -1000




Table 2: Hounsfield Units for Plaque Characterization

Estimated Actual Plaque
Range Range Characterization
14 + 26 HU —42 to +40 HU soft plaque

91 +21 HU 61to 112 HU| intermediate plague
419+ 194 HU | 126 to 736 HU calcified plaque

Nandalur et al used similar definitions for plaque density [18]. rT$tady defined soft
plaques with lipid rich cores as having median density less 58aHU; intermediate
plaques, associated with large amounts of fibrous tissue, having ee$it1-130 HU;
and calcified plaques as having densities above 130 HU. They alsovexbghat
calcified plagues generally had densities considerably higher thar3568hich is the

median density of contrast media.

2. LITERATURE REVIEW

2.1 Image Segmentation

Kurkure, Avila-Montes, and Kakadiaris [19] developed a method todamad segment
the thoracic aorta in non-contrast CT images to replace the mamuathtion of calcified
plaques. Their method used a series of 2D slices from the CTbdatd on the
assumption that the aorta runs approximately vertically in tlusoseof the abdomen.
After preprocessing, they applied a Hough circle transform gione of interest for the
ascending and descending aorta and they found an optimal combinationHxduble
circles by using a cost function which minimized the change medmal position
between circles in adjacent slices, the change in radius érevueles in adjacent slices,
and the Hough value of points in Hough space. An additional costdongis able to
further refine gaps and smooth out the horizontal boundary. Theireségfion method
compared favorably when it was evaluated against aortic boundarieslipamnotated
by an expert. Consistent with the Kurkure method, this project tatkesntage of the
relatively vertical orientation of the descending aorta and presdbe subset of image
slices with the assumption that the 2D cross-section of the aorta is approxuivatear.
Both the circularity descriptor and the measurement of the despka of the centroid

from the artery center are based on this assumption.
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Renard and Yang [20] developed a technique for segmenting both the lumémeand
arterial wall in contrast-enhanced CT images of the coronaeyies by determining a
centerline and classifying the tissues within a cylindertesed on that line. They
separated the tissues into lumen, wall, and the surrounding myocardiunotaddthat
the lumen intensity was the brightest among the three clasBes. difference in the
cross-sectional areas of the lumen and the wall regions wasisied to estimate plaque
regions. This thesis also relies upon the brightness of the cestieetced lumen to
distinguish its border from the surrounding tissues, concentrating cectérastics of the

lumen border outline to indicate potential plaque areas.

2.2 Image Descriptors

Once the lumen boundary has been estimated, its charactedatiche described.
Nguyen, and Rangayyan [21] found that the fractal dimension wasdsihape feature
to quantify the complexity and irregularity of an object's boundarke technique was
successfully applied to contours that were hand drawn by an eapedver 100

mammogram masses, and a clear separation of benign and matigsseis was found,
with the smoother contours of the benign masses generating aftast@ dimension.

In a similar way, the presence of plaque was expected to sgctha complexity and
irregularity of the lumen border which would be reflected in ddigcalculated fractal

dimension.

In addition to static descriptors to identify image slices dom@ potential areas of
plaque, information about the elastic properties of the aorticfreall time series images
is explored. These images are recorded at increments withifR4Reinterval, the
duration of the cardiac cycle. Stefanadis et al [22] verifiet dbetic elastic properties
represent a substantial independent risk factor in predicting coremanys in patients
with coronary artery disease. They considered distensibilitguleted from the
percentage change in cross-sectional area between diastokysiald, in evaluating
elastic properties. Galante et al [23] segmented the aortarfiulti-detector CT images
and estimated shape and size features using a temporal resolutem frames per
cardiac cycle. They were able to verify a decrease ifi@tgsand strain in vessels

11



containing aneurysms, and their measurements compared well wrgntcanethods
which require doctors to perform manual measurements of aortitethies at specific
anatomical sites. This thesis considers the percentage expafhdioa lumen as an
indicator of distensibility and the dispersion of the centroid value aseasure of
asymmetry to determine how the presence of plaque mighsbeiat®d with stiffness or

asymmetry in the expansion of the aortic cross-sectional area duringdfae cycle.

3. METHODOLOGY
3.1 Overview

The focus of this study is a comparison of the ability of a cetlescriptors to
characterize images of the aorta to identify those with potestégls of plaque. The

method required:

Manual selection of a region of interest containing the descerdirig from a
complete CT scan.
Segmentation of the lumen border outline:
o Initial highlighting of the region of lumen candidate pixels usangulse-
coupled neural network (PCNN).
o ldentifying the outer border of this region of interest.
Calculation of descriptors based on border outline of a single imisigéened at
the 75% gating of the cardiac cycle. These are referrad tetatic descriptors”
and include:
o Circularity based on perimeter and area of lumen.
o Difference between the best estimate of the center of teeyand the
centroid of the lumen.
o Percentage difference between the lumen area and the areasofaltest
enclosing circle containing the lumen area.

o Fractal dimension of the border outline.

12



Incorporation of time series information into “dynamic descrgta@omparing
differences in image slices recorded at 0% and 40% gatinggdtive cardiac
cycle including:
o Dispersion of the centroid value as a measure of asymmetry tic aor
expansion.
o Distensibility based on the percentage expansion of the area of the lumen.
Comparison of the ability of each descriptor to identify the sulfsetage slices

containing potential plaque areas that have been validated by a medical expert.

A review of the resources used and a detailed explanation ofsegelare contained in

the following sections.

3.2 Datasets

The project analyzed 768 slices from eight CT studies manuddlysiied by
domain experts under the direction of Jeffrey Soble, M.D., AssociaitesBor of
Medicine, Chief of Cardiology Clinical Consultant Service, Asgedirector, Clinical
Echocardiography, and Director, Cardiology Information Services ah Rumsversity
Medical Center, Chicago, lllinois. Additional information on the sifasations may be
found in section 4, Assessment. Of these 768 slices, 168 slicesdemtiéed as likely
to be atherosclerotic and 600 were found to have no visually detectdldations of
plaque. In addition there were 34 images which the experts detbiredssify for a

total of 802 images. A summary of the dataset features is shown in Table 3.

Table 3: Input Datasets

Model Station Series Slice Non-

Manufacturer Name Name Description [Rows [Cols Thickness Pixel Spacing [Plaque [Plague
Philips Brilliance 64 | philips-9502 75% 512 512 0.90 0.400391 | 0.400391 45 29
Philips Brilliance 64 | philips-9502 75% 512 512 0.67 0.386719 | 0.386719 0 8
Philips Brilliance 64 | philips-9502 75% 512 512 0.90 0.429688 | 0.429688 22 162
Philips Brilliance 64 | philips-9502 75% 512 512 0.90 0.507822 | 0.507822 0 73
Philips Brilliance 64 | philips-9502 75% 512 512 0.67 0.300781 | 0.300781 0 131
Philips Brilliance 64 | philips-e4cd175 75% 512 512 0.90 0.359375 | 0.359375 0 197
Philips Brilliance 64 | philips-9502 75% 512 512 0.67 0.429688 | 0.429688 46 0
Philips Brilliance 64 |  philips-9502 75% 512 512 0.67 0.429688 | 0.429688 55 0
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3.3 Software Summary

A variety of open source software packages were supplemented bsnqustgramming

to process the CT datasets, including the following:
OsiriX: an image-processing software package which is complattt the
DICOM format, the standard for producing, storing, and displaying cakdi
images. It was designed for the visualization of multidinograd images and
contains 2D, 3D, and 4D viewers. It can read and display DIC®Mdt files as
well as the DICOM meta-data contained in the file heademsaddition, it can
write a DICOM file from a 2D/3D reconstruction which allowed nual
inspection and selection of a volume of interest from the full CT scan dataset [14].
The Insight Toolkit (ITK): modules for performing registration aedreentation
of medical images. It also provides the ability to read and arii@dCOM format
file, and it contains numerous filtering, geometric transformatiod, satistical
functions. It is primarily a C++ package, but many of the fonstihave been
wrapped for alternative programming languages such as Python [24].
Other available tools: Python and NumPy to process multidimensiorglsa
SciPy for scientific applications, and the Visualization ToolMiTK) for 2D and
3D visualization [25].
Custom software developed for PCNN pre-processing [26] [27].

3.4 Selection

The descending thoracic section of the aorta can be roughlyeskfezsm the complete
CT scan dataset as a volume of interest to facilitate andmmmithe amount of
processing required. As in the Kurkure study [19], the analysis @theantage of the
relatively vertical orientation of the descending aorta, resultirey series of 2D image
slices in which the cross-section of the aorta is approxignatedular. Figure 8 is an
example of one full CT slice in which the region of interestlutiog the descending
aorta, is identified by the green rectangle. In each sthdyegion of interest containing
the descending aorta was manually selected and propagated ttireugtividual slices

from a complete CT scan. The resulting volume of interestwriien to a new DICOM

file.
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Figure 8: Full cardiac CT slice with a manually setcted region of interest.

For the static descriptors, this volume of interest contained bpt2@0 and 300 slices in
the series taken at 75% of the R-R interval. Figure 9 showsnplesaf regions of

interest. From this volume subset, usable image slices elexed based on the ability
to segment the lumen of the aorta without interference from branefeissels or other

anatomical structures with HU values similar to that of the contrast agent.

Figure 9: Sample of selected input images.
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The study images, as shown above, were converted from the DIO@htfto TIFF
which is a flexible public domain raster file format originatlgveloped by Adobe for
archiving images [28]. Since this process simply added a comdtaet of 1024 to the
HU value of each pixel, it allowed for visual inspection of the tesatleach stage of the

process without any gain or loss of image information.

3.5 Segmentation

To help identify the lumen, each image was preprocessed by erquuipled neural
network (PCNN) [29]. The output of a PCNN is a series of pulsesirary images
associated with visually interesting features and boundaries. Irasbtd some other
neural networks such as the multi-level perceptron, the PCNN does enahulsple
layers (input, hidden, output) nor does it involve training [30]. This modehiasainly
a single layer with the connections between a neuron and its neighds®d on the
distance between their positions [30]. The segmenting and edgé&atetdality of the
PCNN is derived from the influence of a neuron on its neighbors whichueages
similar segments of the image to pulse in unison [30] [31] [3He PCNN has been
used successfully as a pre-processing step in other mediaginig applications which
required segmentation of borders or tissue types [26] [27] [33] [34].

The PCNN is modeled after the processing of the visual cortaxsmall mammal. This
is the part of the brain that receives processed informationtfiereye and converts it
into a stream of pulses. Eckhorn used the cat visual cortex to develegron model
[35] which was adapted for image processing by Lindblad and Kir&&§r [ Their

resulting computer model retains two important characteristics of the lmalsystem:

The neurons or visual receptors are interconnected meaning thatonke
receptor receives optical input, it affects the behavior of its neighbors.

The eye receives feedback information which affects the output of a receptor.
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Figure 10: PCNN model equations.

Lindblad and Kinser's model, detailed in Figure 10, has been used sutgesamage
processing with desirable features that include relative immtmitranslation, scaling,
and rotation [29]. In their PCNN model, each image pixel seagethe input stimulus

value “ ” for the individual neuron at positiapand has the following properties at each

pulse:

Every neuron receives feeding inpt’*based on its own stimulus and those
of neighboring neurons.

Every neuron receives linking input™based on output from other neurons.
The feeding and linking input components are combined to form an activity
term “U” for the neuron which is compared to a threshold to determine the
binary output, ¥”, of the neuron at interval

The threshold *” decays with each pulse until the neuron activity level
exceeds the threshold value and fires. The neuron firing alse€&a” to be
reset to its highest point.

“M” and “W’ represent weighting factors for the inputs in the feeding and

linking functions.
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The parameters used in this study were chosen empirically as:
-values for the feeding, linking, and threshold were set at 10.0, 1.0, and 15.0.
The value for the strength of the linking term in the activitycaldtion was
0.1.
The V-potential values for feeding, linking, and resetting thestiold were
set at 0.0, 0.5, and 20.0.
In addition, the initial threshold and the value of were set to zero for each

neuron.

For each set of study images, a representative imagevsigeselected for input in a
preliminary execution of the PCNN. The pixel values were cdrstestched from a
range of approximately 0 to 2000 to a range of 0 to 65535. Fiftyitesadf the PCNN
were executed in the trial, resulting in a series of binaages. A subset of these binary
images is shown in Figure 11 along with this binary output superirdposéhe original
image for reference. The output from the representative imageused to visually

select the iteration that best outlines the lumen border.

It was observed that due to the high HU value of the lumen ardg,pedses begin
within the lumen and propagate out toward the border before breaking hip.aufo-
wave, characteristic of the PCNN [30], allowed the creatica lsihary map of the lumen
region by summing the PCNN output for a fixed number of iteratisndluestrated in
Figure 12. Other features in the image also have pulse output liofGNN so the

lumen area must be separated from this binary output as shown in Figure 13.

The perimeter of the region of interest forms the estimateditwcof the lumen border
as shown in Figure 14. This estimated border is defined by tloé gigels which have a
background pixel (black) in a 4-neighbor as illustrated by BurgdrBurge [36]. This
calculated border is superimposed on the original image fordtist in Figure 15. The
lumen perimeter and region area serve as the basis for dalgulae static image
descriptors which are described in the subsequent sections.
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(@)

(b)

Figure 11: A subset of binary output images from te PCNN (a) and that output is superimposed on theriginal
image (b).

Figure 12: The first three iterations of the binary output of the PCNN from Figure 11 are summed to dne the
regions of interest.
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Figure 13: The lumen region is selected from the iage in Figure 12.

Figure 14: The perimeter of the region in Figure 13s segmented.
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Figure 15: The estimated location of the lumen borer superimposed on the original image.

3.6 Static Image Descriptors

The static descriptors computed are the lumen circularity, lwwaetroid displacement,
the area difference between the smallest enclosing cindehee lumen border, and the
fractal dimension of the lumen border. The descriptors were compatedach

individual image slice.

Figure 16: Perimeter calculation

perimeter= 95" (5vertical + 3horizontal+ J2° 7diagonal) =17.0
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3.6.1 Circularity

The first descriptor calculates the lumen border perimeter lna@rea of the lumen to
form an estimate of circularity. As illustrated in Figd® the perimeter measurement is
estimated by the length of the outer contour of the connecteohrBgi Each segment
measures the distance from one pixel center to an adjoining pexgeerc The
measurement estimates vertical and horizontal segments asahdmitagonal segments

by V2 units. Since this method of calculation has been generally found testveate
the real perimeter, a correction factor of 0.95 is applied @smmended in [36]. The
area estimation is a simple count of the image pixels thapreenthe regionR.
Circularity can be approximated from the perimeter and tha ase a measure of
compactness or roundness which is invariant to translation, rotation, or scalg factor

Area(R)

Circularity(R) =4p”
y(R) =4p Perimeter (R)

Circularity is 1 for a perfectly round region and ranges fféml) for all other shapes
[36].

3.6.2 Centroid Displacement

The second descriptor considered was the distance between thedoefntinei lumen and
the center of the best circle fit to the lumen outline, expressedfraction of the radius.
A preliminary feasibility study explored using a Hough circensform to calculate the
circle. The Hough circle transform is potentially robust even uodaditions which
occlude parts of an image boundary as illustrated in Figure 17.isTinicontrast to the
centroid which can be moved away from its central position by defacboundary
occlusions [37]. The Hough transform creates a set of candidats fuwitithe center of a
circle (or circles), given a radius value (or range of valugs)nbving along the local
normal vector for each point on the perimeter. The location(spicamg the largest
number of accumulated candidate points defines the center of thét mastie(s). In
practice, for this application, the Hough transform did not provide astensireference
to the center of an artery because the radius value was eaaathlthe circle was not
constrained to contain all of the points of the lumen border. Agrdbesl in Figure 18,

the Hough circles did not consistently outline an artery to disshgtine areas of
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potential plaque. Ultimately, the smallest enclosing cirdetaining the lumen area

proved to be a more reliable estimate of the arterial center.

Figure 17: The Hough circle center estimated fromandidate center points.

(a) non-plaque (b) borderline (c) plaque

Figure 18: The Hough circles outlined in green (topow) compared to the smallest enclosing circle (limm row).

This constructed enclosing circle is compared to the Hough circlEgyure 18 and is
illustrated in detail in Figure 19. As described by Schnemiet Eberly [38], the
algorithm used to determine the minimum area circle beginsawdincle that contains
two input points and “grows” a circle that contains all of the poiAfi$er constructing a
circle with the first two support points, all additional points mustesgéed for inclusion
in the circle. If all of the points are contained, the minimuna arecle has been found.

Otherwise, the first non-contained point is added to the list of supparts and all
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circles that can be constructed from the combinations of two @& gupport points must
be found. The selected “grown” circle is the minimum arealecitbat has been
constructed which contains all of the old supporting points. This ¢gdlegen tested to
see if it contains all of the input points. Again if all of the additional pointsar&ined,
the minimum area circle has been found. If not, any previous supppdints which
are now interior points must be removed from the support list andgbetiaim must be

restarted.

The center of this enclosing circle was then used in the seconmiptiasio estimate the

difference between the center of the artery and the centroid of the lumen.

Figure 19: The estimated perimeter of the lumen ishown in magenta with the smallest enclosing circle
highlighted in white. The blue pixels directly inersect the circle border.

3.6.3 Area Difference

The enclosing circle, calculated for the centroid displacementiges and illustrated in
Figure 19, was also used to estimate the occlusion of the dnyeopalculating the
percentage difference between the calculated lumen area amdethef the smallest

enclosing circle.

24



3.6.4 Fractal Dimension

The final static descriptor is the fractal dimension as dssgriby Nguyen and
Rangayyan [21] which quantifies the complexity of the lumen bounddie fractal
dimension was calculated using the box-counting method. For theotdise lumen
perimeter, the method partitions the image into a grid of sqoaexual size and counts
the number of squares that contain at least one perimeter pikakaated in Figure 20.
Grid size is then varied from one square pixel to 64 square piXaks fractal dimension
is estimated by the slope of the line found for a linear regne®f the log of the number
of boxes containing lumen border pixels and the log of the magnificatilex for each
box-partitioning stage. Figure 21 is a graph showing the estimate of filantaision for

the image in Figure 20.

Figure 20: For this grid size, 20 boxes contain pameter pixels.

Figure 21: The slope of the line estimates the fréal dimension of the perimeter outline shown in Figre 20.
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3.7 Time Series Descriptors

As in the studies by Galante et al and by Stefanadis[22]a]23], an alternative to static
image descriptors is an estimate of the elastic propertigheofaorta using images
obtained throughout the cardiac cycle. These descriptors areatedtédr the series in
the study which contain slices acquired at 0% and 40% gating,serpras a fraction of
the R-R interval in the cardiac cycle. The difference inctr@roid values is calculated
as a measure of asymmetry in aortic expansion. In addition, ttenpgge change in the

area of the lumen at systole and diastole is used to estimate a measusnsibilisy.

4. ASSESSMENT

The static descriptors compared in this study are the argubf the lumen outline, the
distance between the centroid of the lumen and the center of étlestranclosing circle,

the area difference between the smallest enclosing circléhandmen, and the fractal
dimension of the lumen outline. In addition, dynamic descriptors inchaléispersion

of the centroid values and the percentage change between the thietuafen at systole
and diastole which are evaluated for studies having the timess#aita available. The
descriptors are evaluated for their ability to identify slieéhich contain potential areas

of plaque.

A “gold standard” is defined as the true disease status, neelasithout error. It may be
defined from clinical follow-up, surgical validation, or autopsy [39].tHe absence of an
available, non-invasive “gold standard”, and consistent with other stddigf0] [23],

the descriptors for this study are assessed against the evaloBtiomain experts. As
illustrated in Figure 22, two cardiologists evaluated each alckidentified it as either
containing visible indications of plaque, or as normal, or they dectmetassify the

slice. For example, the slice image in Figure 22(b) shawsrtdications of plaque, both
soft plaque distorting the arterial border and calcification indéthly the higher intensity

pixels on the lower right aorta border.
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(a) Plaque (b) Calcified plaque (c) Normal (d) Not classified

Figure 22: Expert slice identification.

To minimize assessment error, this study is restrictethéges classified identically by
two cardiologists. The resulting set of classified imagesesgnated as the “reference
set” for the balance of this thesis.

The assessment tools used for this thesis include Receiver i@peCitaracteristic

curves, accuracy measurements, and logistic regression andlygise are elaborated in
the following sections.
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4.1 Classification of Possible Outcomes

The descriptors have been calculated from classification modelaniga each slice
instance to a continuous value. A threshold can then be applied to thestogredict
membership in the plaque or non-plaque classes. For each descripsticandstance
value, there are four possible outcome combinations as shown in EByuiEhis matrix

of possible outcomes is referred to as a confusion matrix or a contingendy@ble

True Class
non -
plague plague
Predicted plaque true positive false positive
Class plnaoqnu-e false negative | true negative

Figure 23: Confusion matrix of possible outcomes faeach discrimination threshold.

The true positive rate or sensitivity of a test can be estimated by:

true positives

true positiverate = —
total positives

The specificity of a test is also called the true negatwe. r The false positive or false
alarm rate is equal to (1-specificity) and is estimated by:

false positives

false positiverate = .
total negatives
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4.2 Receiver Operating Characteristic Curves
One method that this thesis uses to report results is the ReOgigmting Characteristic
(ROC) curve which characterizes their respective sengitand specificity. The area

under the ROC curve is estimated to assess the potential of each descriptor [41].

As illustrated in Figure 24, the ROC graph illustrates the tfdeetween the true
positive rate and the false positive rate of a classifier scrg#or. The ROC graph is a
plot of the true positive rate on the y-axis against the falséygogate on the x-axis as
the discrimination threshold for the descriptor values varies fragm to +¥ . In ROC
space, the point (0, 0) is the state of never classifyingnstarice as positive and
therefore has no chance of a false positive error. The point (1, cbnditionally
classifies all instances as positive so all negativeshailtlassified incorrectly as false
positives. The diagonal line represents a classifier thanbdasore information than
randomly guessing a class. The point (0, 1) represents a peaesifier. Intuitively, a
classifier point is better if it is closer to the (0, 1) conmvbich means that either the true
positive rate is higher, the false positive rate is lowehath. By varying the classifier
threshold for the continuous values that are produced by the desc¢rgptrsie (step-
function) in the ROC space is produced [40].
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Figure 24: ROC Curve.

One positive property of a ROC curve is that if the proportion of pesib negative
instances changes in a test set, the curve will not changeitsitegends only on the true

positive and false positive rates [40].

Since a successful classifier will produce relative scoreslues to discriminate normal
and abnormal instances of the test outcome [40], the area under agUR@JAUC)
will vary from .5 which indicates no predictive value to 1.0 representing periaoteay .
The area measures the probability that in a random pair éogstdta normal and an
abnormal image, the descriptor will allow them to be correctly ranked orfiddrigd2].

The following labels, which have been suggested for the evaluation dictdissi model
based on the area under a ROC curve [43], will be used in this thesis as one description of
the classifiers:

0.50 to 0.75 = fair

0.75 to 0.92 = good

0.92 to 0.97 = very good

0.97 to 1.00 = excellent
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Although the area under the curve will be considered in this stady guide to the
performance of the descriptors, it is not a guaranteed andwisrpossible for a curve
with a higher AUC to perform worse within a specific regiontled ROC space, so
classifier evaluation must consider the desired target setsiiviels as well as error
costs. Classifier thresholds which produce points on the left-handfdide ROC space
are “conservative” in that they will classify an instanse pasitive only with strong
evidence so there will be very few false positive errors. Irugiper right area of ROC
space, classifiers can be considered more “liberal” siheg will make a positive
classification on weaker evidence. This means that they maplédo identify close to
all positive instances correctly at the expense of a higé faisitive rate [40]. To set the
appropriate threshold value for a decision threshold, knowledge of thecesterand the

prevalence of the disease must be considered.

4.3 Accuracy
Evaluating the accuracy of a descriptor can provide additionalhingitp selecting a
decision threshold value [44]. The accuracy of a descriptor is baste percentage of

correct classifications in the study:

true positivest true negatives
accuracy= — : [40].
positivest negatives

The accuracy of each descriptor is evaluated and graphed taathuthe variation based
on the threshold value and the point of maximum accuracy is shown &O@ecurve

graphs for each descriptor.
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4.4 Regression Models

A linear regression model is not appropriate for this project. eSthe dependent
variable can be expressed by the categorical values zeroremdhe assumption of
common variance in linear regression is not valid. In addition, a limeael could

predict values of the dependent variable that were less than zgreater than one.
Since linear regression models do not apply, logistic regression sneded fit for each

of the static descriptors and for combinations of the descriptongatoate the potential

benefit of using multiple descriptors [45] [46].

The first step in defining a logistic regression model is to entoeldependent variable.

In this case a variablg,, is defined as the ratio of images classified as plaque at a
descriptor threshold value to total plaque images, where . Next, a threshold
odds ratio, is computed. This ratio varies from zero to positive infinity. The
transformation from the odds ratio to the log odds, also called thduogtion, maps the
values from negative infinity to positive infinity. It also has siyenmetric property that

the log odds of being plaque are the opposite of the log odds of being non-plaque [46]:

1_
loge( P ) =- loge( p)
1- p p

The logistic regression for a single descriptor is:

log.-2—) = a + bx
1-p

or more generally for the multiple logistic regression:

Ioge(ﬁ) =a+bx +b,x,+..

In this thesis, the model parameters were fit using the maxilikefihood loss function
which maximizes the conditional probability of the data given the muataimeters [45]

[47]. An example graph for the circularity descriptor model is shown in Figure 25.
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Figure 25: The log odds compared to the regressiastimate based on the circularity descriptor.

1" #

Figure 26: Exponentiation of the log odds to yieldhe odds ratio at each level.

The estimated emfficf an

The p-value for each descriptor is used to test for evidenceetdtsonship between the
predictor and the response variable. The null hypothesis asseéttsetigais no change in

the odds ratio based on the predictor variable.
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independent variable is the estimated change in the log odds fougacdhange in the
predictor, so exponentiation estimates the odds ratio at each thréshallas shown in
Figure 26. An estimated coefficient of zero yields an odds ohtone; and therefore, it
implies that the probability of “plaque” is equal to the probabditynot plaque” so that

the variable has no effect [45].

Solving to estimate the probability the ratio of plague images classified at a descriptor

threshold value to total plague images, yields:

which is shown in Figure 27.

" # R

=exp( + (circularity))/(1+exp( + (circularity)))

Figure 27: The probability of plague estimated bas# on the circularity descriptor.

In addition to the logistic regression model parameters, Minitab usad to produce a
table of measures of association between the response variable edlidtedr
probabilities.  The tabulation of concordant and discordant pairs exantes
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relationship between each possible pair of plaque and non-plague asidteadicates
whether the image slice with the plaque has a higher predicted pitybafiqplaque. The
percentage of concordant pairs is equivalent to the area undeDelrve [45] which
measures the probability that in a random pair consisting of a harrdaan abnormal

image, the descriptor will allow them to be correctly ranked or identified [42]

The Goodman-Kruskal gamma further evaluates the association behee@riables by
calculating the difference between the probability of geimgncordant pair and that of
getting a discordant pair:

_ P(concordanj - P(discordan)
P(concordanj + P(discordan)
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Slices classified with indications of plaque:

circularity area difference centroid displacement fractal dimension
0.9554 13.33% 5.13% 0.963

circularity area difference centroid displacement fractal dimension
0.9540 10.90% 3.75% 0.944

Figure 28: Samples and descriptor values for imagesices classified with indications of plaque.

4.5 Slice Classification Examples

As stated earlier, the reported results are based on imaigedith two experts made
identical determinations on the presence or absence of visible pratjc&tions. This

section illustrates examples of slice classifications andothier border of the lumen

region calculated using this defined methodology.

Figure 28 displays two images assessed as having indicationagqoepland Figure 29
shows two image samples classified as normal. The leftrmagfe is the original CT
image which the experts evaluated. The second image shows thetednperimeter
outline superimposed on the original image. In the third frame,stiteaged perimeter
of the lumen is shown in red, and the smallest enclosing cirdlghdighted in white.

The calculated descriptors for the image slices are shown in the figuesiparison.
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Slices classified as normal:

fractal dimension

circularity area difference centroid displacement
0.9630 6.90% 1.77% 0.945
circularity area difference centroid displacement fractal dimension
0.9745 5.67% 1.00% 0.859

Figure 29: Samples and descriptor values for imagdlices classified as having no visible indicatiorsf plaque.

In addition, there was a small group of slices that the explextlined to classify based

on their visual inspection. Examples of these slices arerdtestin Figure 30 and were

not included in the classification statistics for the study.

In some image slices, there were vessel branches or other strudtigiedrad HU values

similar to that of the lumen. In these cases, the resultmayybioutput regions were

connected by one or more pixels which prevented the automatedtsepasang the

PCNN output. Figure 31 illustrates examples of these imageshangerimeters and

areas that were eliminated from consideration because of this problem.
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Slices not classified:

circularity area difference centroid displacement fractal dimension
0.9887 4.33% 1.48% 0.911

circularity area difference centroid displacement fractal dimension
0.9587 7.47% 3.43% 0.916

Figure 30: Samples and descriptor values for imagglices not classified.

Slices not included because of limitations of segme ntation:

@)

(b)

Figure 31: Samples of images slices in which a vesbranch (a) or another structure (b) prevents aubmated
segmentation using the PCNN region output.
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5. STATIC DESCRIPTOR RESULTS
5.1 Circularity

The histograms in Figure 32 tabulate the values for the cirgutdrihe lumen perimeter.
Figure 32(a) displays the slice counts for each histograenvadtfor circularity values
from the reference set. Figure 32(b) presents the dtagghs as a percentage of the
total number of slices in each circularity interval. As higestzed, the circularity values
for slices which were not classified as having visible inthoat of plaque were, for the

most part, closer to one although there is not an absolute separation.

The ROC curve for circularity is shown in Figure 33. Theaneder the ROC curve is
0.94 which is in the range rated as a very good classifier (0.027). At the point of
the highest accuracy, shown at the yellow triangle, approximé@o of the positive
slices were classified correctly with a circularity chgstor threshold of .92. This
threshold resulted in approximately 4% false positives. To ré@éh of the slices
containing indications of plaque, the threshold would need to be increasedaba®6

associated cost of almost 20% false positive identification.
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Figure 32: Circularity values for 802 image slices600 non-plaque, 168 plaque, and 34 unclassified.
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Figure 33: ROC curve for circularity.
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5.2 Centroid Displacement

The histograms in Figure 34 show the values for the percent diféeebatareen the best
estimate of the center of the artery and the centroid of thenlurrigure 34(a) displays
the slice counts for each interval of centroid displacement vakigare 34(b) shows the
classifications for the reference set as percentage ofothkslices for each range of
values. As predicted, the displacement values for slices whetkisidle indications of

plaque were higher.

The ROC curve for the centroid displacement is shown in Figure 35arénaunder the
curve is 0.77 which is at the low end of the range of 0.75 to 0.92, ratadgasd

classifier. While rated by the reference descriptios] [@s good, at the point of the
highest accuracy shown at the yellow triangle, only 43% ofptbstive slices were
classified correctly by the descriptor using a threshold of 4.A%tthis threshold level,

approximately 6% of the normal slices were classified B faositives. To reach the
level of identifying 90% of the slices containing indications ofgpk the threshold
would need to be changed to 1.9% with a significant increase irstiogiated cost of

almost 60% false positive identification.
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Figure 34: Percent difference values for the bess#@mate of the center of the artery and the centra of the
lumen for 802 image slices: 600 non-plaque, 168 plae, and 34 unclassified.
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Figure 35: ROC curve for centroid displacement.
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5.3 Area Difference

The histograms in Figure 36 show the percentage differencearbateeen the lumen
and the smallest enclosing circle containing the lumen. Figurg 8&ays the slice
counts for the reference set in each interval of area differealces. Figure 36(b)
displays the slice classifications as a percentage of tHestiois in each interval. For
the most part, the area difference values for slices withlgigidications of plague were

higher reflecting the displacement of the lumen area.

The ROC curve for the area difference is shown in Figure 37. The area undevthis c
0.96 which is in the range of 0.92 to 0.97 rated as a very good classgifidre point of

the highest accuracy, shown at the yellow triangle, approxiyn88% of the positive
slices were classified correctly by the descriptor usirthrashold of 9.4%. At this
threshold level, between 7% and 8% of the normal slices were fildsas false
positives. To reach the level of identifying 90% of the sliaa#taining indications of
plaque, the threshold would need to be changed to 8.4% with a corresponciagero

almost 15% false positive identification.
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Figure 36: Percent difference in area between theinen and the smallest enclosing circle containindné lumen
for 768 image slices: 600 non-plaque, 168 plaqueyda34 unclassified.
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Figure 37: ROC curve for area difference.
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5.4 Fractal Dimension

The histograms in Figure 38 show the fractal dimension of the perimokthe lumen.
The values for slices which did not have visible plaque indicatioms generally lower
which would be a sign of a less complex surface perimé&tigure 38(a) shows the slice
counts for each interval of the fractal dimension values. Figurg BB@irates the slice
classifications for the reference set as a percentage dbtieslices in each range of

values.

The ROC curve for fractal dimension is shown in Figure 39. Tée @ander the curve is
0.67 which is in the range of 0.50 to 0.75 rated as only a fair clasSifierpoint of the
highest accuracy of the fractal dimension classifier we%,78hown at the yellow
triangle. This point would not be considered a reasonable clagstficatce only 2% to
3% of the true positives were identified at this threshold. rdach the level of
identifying 90% of the slices containing indications of plaque, teecated cost rises to
over 70% false positive identification. To reach even a 75% truevmosdie, the false

positive rate is over 40%.
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Figure 38: Fractal dimension of the lumen perimeteifor 802 image slices: 600 non-plaque, 168 plaquend 34
unclassified.
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Figure 39: ROC curve for fractal dimension.
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5.5 Comparison of the Static Descriptors

All of the descriptors have some merit in adding information aboutl#ssification of
the slices. Figure 40 shows the ROC curves for the statarigtors plotted on the same
graph. Table 4 summarizes the area of the ROC space underiassifier curve. Of
particular note is the area difference between the lumen amstntéleest enclosing circle
that contains all of the perimeter points of the lumen regidms descriptor was able to
best discriminate the slices in agreement with the gold standaricdss of plaque or
no plaque indications. The area difference descriptor was lesgveettsimage noise at
the lumen edges, a more noticeable factor in the calculati@iraeflarity and fractal

dimension.
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Figure 40: ROC Curves for all static descriptors.
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Table 4: Classifier Comparison by Area under ROC Curve

Area Under Curve
Descriptor (AUC) SE(AUC) Classifier Rating
Circularity 0.94 0.01 0.92 to 0.97 = very good
Centroid Displacement 0.80 0.02 0.75t0 0.92 = good
Area Difference 0.96 0.01 0.92 to 0.97 = very good
Fractal Dimension 0.67 0.02 0.75 to 0.92 = good

5.7 Accuracy of the Static Descriptors

A further comparison of the descriptors is shown in Table 5 with #thémum accuracy
level that they were able to achieve. Table 5 also breaks downatkienum accuracy
figure to reflect both the numbers of true positives and true negétiaethe descriptors
could classify.

Again, the area difference was the strongest performer. As showiable 5, the

maximum accuracy for the area difference descriptor is .9¢hwdgcurs for a threshold
of 9.4%. At this threshold 141 of 168 true positive (plaque) imageslassified as well

as 555 of 600 true negative (non-plaque) image classificationsreFEguhrough Figure

44 llustrate how the accuracy values vary as the thresholdsdsted for each

descriptor.
Table 5: Accuracy Comparison
Maximum # True # True

Descriptor Accuracy Positives Negatives TP + TN
Circularity 0.88 101 575 676
Centroid Displacement 0.83 72 564 636
Area Difference 0.91 141 555 696
Fractal Dimension 0.79 6 598 604

note: 768 total cases
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Figure 41: Accuracy of the circularity descriptor as the threshold varies.
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Figure 42: Accuracy of the centroid displacement driptor as the threshold varies.
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Figure 43: Accuracy of the area difference descriptr as the threshold varies.
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Figure 44: Accuracy of the fractal dimension descptor as the threshold varies.
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6. DYNAMIC DESCRIPTOR RESULTS

The time series results discussed below measure differences/abdetween slices
acquired at the 0% and 40% increments in the R-R interval of tdeacarycle. Only
one of the eight studies considered for the static descriptorb@athta available for the
time series analysis. These preliminary results aredb@sea much smaller number of

image slices from one patient.

6.1 Centroid Dispersion

The centroid dispersion values are shown in the histograms in Figuréhésdifference
in the centroid values in slices acquired at 0% and 40% increnmetfits R-R interval is
calculated as a measure of asymmetry in aortic expansigareF5(a) displays the slice
counts in each interval for the reference set. Figure 45(b¢mi®the classifications as a

percentage of the total number of slices in each interval.

The ROC curve for the centroid difference is shown in Figure Bte area under the
curve is 0.61 which is in the lower part of the range of 0.50 to 0.78 estea fair

classifier. If the threshold is set lower than approxima2es, the level at which 75% of
the true positives are identified, the curve for the centroid difeeredescriptor falls

below the diagonal line indicating a performance worse than random chance.
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Figure 45: Percentage change in the position of tHamen centroid at 0% to 40% of the R-R interval fao 97

image slices: 25 non-plaque, 70 plaque, and 2 unsified.
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Figure 46: ROC Curve for centroid displacement.

6.2 Percentage Change in Lumen Area

The percentage change in the area of the lumen at 0% and 40% eRthedRval in the
cardiac cycle was calculated as an indication of vesselcthast The slice counts for
each interval are shown in Figure 47(a) and the percentagees 81 each interval is
shown in Figure 47(b). The ROC curve for the area difference isnshowigure 48.
The area under the curve is 0.68 which is in the range of 0.50 to Octhasta fair

classifier.
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Figure 47: Percentage change in the area of the Iwen at 0% to 40% of the R-R interval for 97 image stes: 25
non-plaque, 70 plaque, and 2 unclassified.
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6.3 Comparison of the Time Series Descriptors

Figure 49 shows a comparison of the ROC curves for the times stggeriptors. At
0.68, the area under the ROC curve for the area differenceaigigtiean for the centroid
displacement at 0.61; although based on the AUC value as shown in Tablén 6, bot
classifiers would be rated in the range of fair descriptorsth Bescriptors have some
merit in the classification of the slices. In comparing thetassifiers, the cost of errors
becomes an important factor because their relative perfornraneeses as the false

positive rate increases. The limited amount of data availablthis comparison limits

Figure 48: ROC Curve for area difference.

the strength of any conclusion that would be drawn.
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Figure 49: ROC Curves for time series descriptors.
Table 6: Classifier Comparison by Area under ROC Curve
Descriptor Area Under Curve (AUC) | SE(AUC) Classifier Rating

Centroid Difference 0.61 0.06 0.50 to 0.75 = fair

Area Difference 0.68 0.06 0.50 to 0.75 = fair
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7. DISCUSSION

Since the area difference descriptor outperformed all of ther athssification models,
with an AUC of 0.96 which is considered to be in the “very good” [45] acébent”
[41] rating category, this section will look more closely atstrengths and weaknesses

of this descriptor.

The point on the ROC curve that corresponds to the maximum accuracisgghiotvn in
yellow in Figure 50. That threshold of 9.4% identifies 84% of the paositive images
with a cost of misclassifying 8% false positive images. afissexample, if it was a
requirement of this test to identify 90% of the positive imagies threshold could be
moved to the point shown in green in Figure 50. The threshold which protispsint
is approximately 8.4%. It identifies 152 (90%) true positive images cost of
misclassifying 89 (15%) false positives.
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Figure 50: Accuracy measurements for the area diffence descriptor.

62




7.1 Misclassification

At the threshold level that identifies 90% of the positive imdigess the 10% of images
which are classified as false negatives by the areadtiife descriptor are highlighted in
Figure 51. Figure 52 illustrates those false negatives whicle Wwelow the 8.4%
threshold for the area difference descriptor. Many of thesesstiontain an area visually
identified as calcified plaque but which doesn’t occlude a largedrthe lumen. It can
also be observed that the majority of these slices would havecbgently identified by

the circularity descriptor at the threshold level which identified 90% of theymoslices.
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Figure 51: The red oval highlights the area of faks negative slices.
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centroid fractal
slice identification circularity  arga difference displacement dimension
A3_P75_00010199.tif 0.9380 5.7% 1.3% 0.904
A3_P75_00010198.tif | 0.9722 | 5.9% 3.2% | 0.904
A3_P75_00010194.tif | 0.9870 | 5.9% 1.9% | 0.900
GJO_P75_00010110.tif | 0.8955 | 6.3% 0.2% | 0.967
A3_P75_00010100.tif | 0.9493 | 6.6% 5.0% | 0.930
A3_P75_00010128.tif | 0.9438 | 6.7% 2.9% | 0.980

(Continued on next page)
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centroid fractal
slice identification circularity  arga difference displacement dimension
GJO_P75_00010108.tif 0.9069 7.1% 0.6% 0.922
A3_P75_00010134.tif | 0.9201 | 7.4% 4.2% | 0.979
GJO_P75_00010219.tif | 0.9147 | 7.6% 4.6% | 0.932
A3_P75_00010096.tif | 0.9300 | 7.6% 2.6% | 0.980
KD_P75_00010148.tif | 0.8788 | 7.7% 1.7% | 0.969
Al_P75_00010173.tif | 0.9537 [ 8.0% 1.9% [ 0.943

(Continued on next page)
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centroid fractal
slice identification circularity  arga difference displacement dimension
KD_P75_00010149.tif 0.8323 8.0% 0.9% 0.970
A3_P75_00010087.tif | 0.9168 | 8.1% | 1.3% | 0.901
GJO_P75_00010153.tif | 0.9173 | 8.3% | 2.7% | 1.006

Figure 52: Image slices classified by physicians &aving visual indications of plaque that would notbe correctly
classified by area difference descriptor.
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At the opposite end of the ROC curve are the slices in the nofasaifcation of the
reference set which are identified as false positive by tha difference descriptor.
These normal slices fall into the intervals highlighted bygieen oval in the histogram
in Figure 53. Figure 54 illustrates slices representative df5be of slices that would be
identified as false positives. Several of these slices hawavanshape which might
indicate in that area of the CT scan, the slices of the dattaot meet the assumption
that the slices would be orthogonal. Again in the case of thése pasitives, it is
observed that many of these slices would have been corickatlyfied by the circularity

descriptor.
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Figure 53: The green oval highlights the area of fae positive slices.
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centroid fractal
slice identification circularity  arga difference displacement dimension
FC_P75_ 00010207 tif 0.9556 14.5% 7.4% 0.980
FC P75 00010205.tif | 0.9688 | 14.4% 5.0% | 0.984
FC P75 00010206.tif | 0.9656 | 14.0% 6.2% | 0.985
FC_P75 00010204.tif | 0.9862 | 13.3% 4.8% | 0.983
BE_P75 00010112.tif | 0.9847 | 13.1% 4.5% | 0.915
A4 P75 00010006.tif | 0.9563 | 13.0% 3.6% | 0.946

(Continued on next page)
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centroid fractal
slice identification circularity  arga difference displacement dimension
BE_P75_00010207.tif 0.9827 12.6% 1.8% 0.894
BE P75 00010209.tif | 0.9884 | 11.9% 1.7% | 0.941
BE P75 00010208.tif | 0.9876 | 11.8% 3.0% | 0.931
BE_P75_00010210.tif | 1.0042 | 11.7% 3.8% | 0.937
BE P75 00010113.tif | 0.9918 | 11.6% 5.2% | 0.924
FC P75 00010116.tif | 0.9466 | 11.5% 3.8% | 0.882

(Continued on next page)
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centroid fractal
slice identification circularity  arga difference displacement dimension
Al_P75_00010018.tif 0.9678 11.5% 2.3% 0.937
Al P75 00010087.tif | 0.9073 | 11.3% | 5.2% | 0.942
BE_P75_00010000.tif | 0.9853 | 11.2% | 4.2% | 0.913
Al P75 00010191.tif | 0.9754 | 11.0% | 0.4% | 0.956
BE P75 00010212.tif | 0.9894 | 10.9% | 5.6% | 0.930
BE_P75_00010228.tif | 0.9910 | 10.9% | 2.6% | 0.877

Figure 54: Image slices classified by physicians &gsving no visual indications of plaque that wouldhot be
correctly classified by area difference descriptor.
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7.2 Combining the Descriptors

In the previous section, images which were misclassified by the are@wuidféetdescriptor
were presented. For many of these images, an alternatgpttesaould have yielded
the correct classification. Table 7 summarizes the restifiting a logistic regression
model [42] with each descriptor as the independent (predictor) vaaabl the reference

classification (plaque = 1, non-plaque = 0) as the response variable.

From the output, p-values of less than 0.05 indicate that there is ewiddna
relationship between each individual predictor and the response variable
measurement of the concordant pairs is comparable to the estanedisdunder the ROC
curves. The measurement of the Goodman-Kruskal Gamma also indictése area

difference descriptor has the best individual predictive ability.

Table 7: Individual Logistic Regression Results

Descriptor p-value Concordant Pairs % Discordant Pairs % Goodman Kruskal
Circularity 0.00 93.4% 6.5% 0.87
Centroid Displacement 0.00 79.4% 20.2% 0.59
Area Difference 0.00 94.6% 5.3% 0.89
Fractal Dimension 0.00 67.1% 32.3% 0.35

Since the logistic regression statistics indicated that eltitealescriptors had merit in
predicting the response variable, the first step in fittingntidtiple logistic regression

model included all four descriptors. The results are summarized in Table 8.

Table 8: Multiple Logistic Regression Result

Descriptor Coefficient | p-value | Concordant Pairs % | Discordant Pairs % | Goodman Kruskal
Constant 17.4 0.008
Circularity -34.4 0.000
Centroid Displacement 15.7 0.103 97.2% 2.8% 0.94
Area Difference 70.6 0.000
Fractal Dimension 7.8 0.098

In this case, the p-values for the circularity and the aréareince descriptors indicate

that there is evidence of a relationship between these predictors and thegespiaide.
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Since the p-values for the centroid displacement and the fractandion are above
0.05, a reduced model should be considered. These models are summarizlle i9.

Both three-variable models indicate that circularity and aréareince are the only two
descriptors that are significant in this combined model. The pwdine centroid

displacement and fractal dimension indicate that there is natienff evidence of a
relationship between these predictors and the response variabdecoftordant pairs
and the Goodman-Kruskal gamma indicate that the simpler twdslean@odel has equal
predictive ability. The percentage of concordant pairs indictitat the two-variable

model is the best predictor of the response variable in this study.

Table 9: Reduced Multiple Logistic Regression Models

Descriptor | Coefficient | p-value | Concordant Pairs % | Discordant Pairs % | Goodman Kruskal
Three predictors
Constant 25.9 0.000
Circularity -35.6 0.000 97.1% 2.9% 0.94
Area Difference 70.6 0.000
Centroid Displacement 13.8 0.157
Three predictors
Constant 18.1 0.000
Circularity -33.9 0.000 97.1% 2.8% 0.94
Area Difference 75 0.000
Fractal Dimension 6.8 0.149
Two predictors
Constant 25.6 0.000
Circularity -35.1 0.000 97.1% 2.9% 0.94
Area Difference 74.7 0.000
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8. FUTURE WORK

The images for this thesis were obtained from a limited nuwifbeaardiac CT studies and
their geometric features were exploited to produce a binargifitasion of those slices
exhibiting evidence of plaque as determined by medical expeéaisdating this work by
actual plague measurements through technologies such as intravadtasound
(IVUS) could provide a more accurate, continuous scale of plagque invehieta
evaluate the potential of each image descriptor. It cdsddlee instructive to evaluate

the effect of additional information such as patient age or sex on descriptor perderm

While this study focused on the features of the lumen border as-dirtvensional object,
further information about the characteristics of plaque deposithtrbig obtained by
developing descriptors that incorporate volume information by considetieg
neighboring slice geometry as outlined in the studies of KurkureaAdntes, and
Kakadiaris [19] and Renard and Yang [20]. For example, a changeescaptor value

along the length of the aorta could also be an indication of an area of interest.

The evaluation of the time series descriptors was limitedstmal amount of available
data. The potential in estimating elastic properties from rniregé sequences merits
further study. Elasticity is also an area where descriphaght be greatly influenced by

the age of the patient in addition to any plaque burden that is present.

Finally, while this project focused on contrast-enhanced CT imagestechniques
developed in this analysis may be applicable to MRI images o&dha. Identifying
plaque in MRI slices would be a significant improvement since Mfabes are acquired

without the use of ionizing radiation.
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9. SUMMARY

This thesis compared morphological features from CT cross-sdctioages of the
aorta. Using an estimated outline of the lumen border, several statfje descriptors
were calculated and compared. The border was also used a&ssadbaompare the
elastic properties of the aorta as the border outline varied in time duringrth&cccycle.
The project compared how well these descriptors are able tafydsites exhibiting

evidence of plaque as determined by medical experts.

All of the descriptors exhibited some evidence of predictive apitity the strongest
models were based on the area difference and the circul&#gh of these descriptors
showed individual strength with maximum accuracy levels near ynipetcent and

predictive probabilities estimated by the areas under the R@@< in the range

classified as very good. Combining the strengths of these twaimediising a multiple

logistic regression provided the strongest model.
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