
Development of a Web-based Service to
Transcribe Between Multiple

Orthographies of the Iu Mien Language

Robert P. Batzinger

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree

Master of Science in Applied Mathematics and Computer
Science

in the Department of Computer and Information Science,
Indiana University
October 7, 2011

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the

requirements for the degree of Master of Science.

Michael Scheessele

Liquo Yu

Zhong Guan

Dana Vrajitoru

Abstract

The goal of this study was to explore the use of machine learning techniques in the

development of a web-based application that transcribes between multiple orthogra-

phies of the same language. To this end, source text files used in the publishing of the

Iu Mien Bible translation in 4 scripts were merged into a single textbase that served

as a text corpus for this study.

All syllables in the corpus were combined into a list of parallel renderings which

were subjected to ID3 and neural networks with the back propagation in an attempt

to achieve machine learning of transcription between the different Iu Mien orthogra-

phies. The most effective set of neural net transcription rules were captured and

incorporated into a web-based service where visitors could submit text in one writing

system and receive a webpage containing the corresponding text rendered in the other

writing systems of this language. Transcriptions that are in excess of 90% correct were

achieved between a Roman script and another Roman script or between a non-Roman

script and another non-Roman script. Transcriptions between a Roman script and a

non-Roman yield output that were only 50% correct. This system is still being tested

and improved by linguists and volunteers from various organizations associated with

the target community within Thailand, Laos, Vietnam and the USA.

This study demonstrates the potential of this approach for developing written

materials in languages with multiple scripts. This study also provides useful insights

on how this technology might be improved.

i

Dedication

God can do anything, you know— far more than you could ever
imagine or guess or request in your wildest dreams!

He does it not by pushing us around but by working within us,
His Spirit deeply and gently within us.

Ephesians 3:20 (English, The Message)[1]

Tinb huvb, ei ninb lovg ninb Eei tomb Qa’q yem Bua Eei Hruq kaEuad zruj kov,
zuvq haib zruj kaub Zamb Bua haib Toq Eei fai Namq tu’q Tauj Eei.

e-fe-so 3:20 (Iu Mien – Old Roman Script)[2]

Tin-Hungh, ei ninh longc ninh nyei domh qawv yiem mbuo nyei hnyouv gu’nyuoz zoux
gong,

zungv haih zoux gauh camv mbuo haih tov nyei fai hnamv duqv taux nyei.

E-fe-so 3:20 (Iu Mien – New Roman Script)[3]

ทิน-ฮู่ง, เอย นิ่น หล่ง นิ่น เญย ต้ม ชะ เยียม บัว เญย เฮญี้ยว กะญั์ว โหฒว กง,
ฒู้ง ไฮ่ โหฒว เก้า ธั้ม บัว ไฮ่ โท้ เญย ไฟ ฮนั้ม ตุ๊ เถา เญย.

เอ^เฟ^โซ 3:20 (Iu Mien – Thai Script)[4]

ທິນ-ຮູງ, ເອີຍ ນນ aງ ນນ ເຍີຍ ຕaມ ທຈະ ຢຽມ ບົaວ ເຍີຍ ໂຮຍວ ກະຍົa໌ວ ໂຕສວ ກົaງ,
ຕສູງ ໄຮ ໂຕສວ ເກາ ທສa ບົaວ ໄຮ ໂທ ເຍີຍ ໄຟ ຮນa ຕຸ ເຖົາ ເຍີຍ.

ເອ-ເຟ-ໂຊ 3:20 (Iu Mien – Lao Script)[5]

ii

Acknowledgements

This project could not have been completed without help. I am grateful for the

time and effort various individuals have taken to assist me. Therefore, I want to

acknowledge that their help was truly God sent and much appreciated.

I am greatly indebted to Ann Burgess for providing instruction about the Iu Mien

orthographies and for her painstaking efforts, together with Bienh Gueix-Fonge, in

editing and proofreading drafts of the Bible translation in all four orthographies.

I will always remember them for their diligence to detail, patience with primitive

computer systems, and perserverance on a difficult translation project that spanned

two decades.

I am also grateful to OMF Publishers and the Thailand Bible Society, the co-

publishers of the Iu Mien Bible, for the use of the source text files of the Iu Mien

Bible translation for this studies. I also acknowledge the efforts of the TBS type-

setter, Jongluck Tariyo, for her attempts to maintain markup standards in the elec-

tronic manuscripts despite the pressure of tight typesetting deadlines of this Bible

transaltion.

I recognize and thank the staff of Heroku for their generous technical support

and service in providing a free Rails hosting services and technical assistance on

the Amazon Elastic Compute Cloud (Amazon EC2). This versatile service provided

excellent opportunities to experiment with cutting edge technology.

This project was also greatly facilitated by some key software: the reliable non-

Roman script text processing capabilities of the Ruby programming language by Yuk-

iii

iv

ihiro Matsumoto and the flexible non-Roman typography of Jonathan Kew’s XƎTEX

/ XƎLATEX variants of Donald E. Knuth’s TEX typesetting system. I am truly grateful

for the willingness of these three eminent computer developers, not only for taking

the time to respond to my inquiries, but also for their efforts to expand the Unicode

support of their products.

I am grateful for the encouragement and feedback from members of the IU South

Bend Department of Computer and Information Sciences. I am thankful for the guid-

ance, patience and insight of my advisor, Dr. Michael Scheessele. The thesis was also

shaped and improved by the regular informal encounters and hallway conversations

with Drs. James Wolfer and Hossein Hakimzadeh who provided generous amounts of

encouragement and intellectual prodding. I am also grateful for insights and feedback

from the readers of this thesis, Drs. Liquo Yu and Zhong Guan.

I also acknowledge support of my wife Khajohn as well and my daughters, Joy

and Faith who have been a constant source of encouragement and inspiration all the

years I have been developing software to support publishing in various non-Roman

scripts of Asia.

Lastly, I thank the Iu Mien people for their interest in this project and for their

patience as the systems were developed and tested. It is rewarding to see this tech-

nology used as a communication bridge between members of a people group who have

been separated by geopolitical borders and orthographic differences. May God con-

tinue to bless them with a spirit of cooperation as they build a better future together

despite these barriers between them.

Contents

Abstract . i

Dedication . ii

Acknowledgements . iii

Table of contents . v

List of tables . vii

List of figures . ix

List of code fragments . xii

1 Introduction . 1
1.1 Multiple orthographies of a language 1
1.2 The value of parallel texts . 6
1.3 The Iu Mien and their language . 9
1.4 Four major orthographies of Iu Mien 12
1.5 A text corpus from the Iu Mien Bible translation 18
1.6 Support for Unicode encodings . 25
1.7 Machine learning of transcription . 27
1.8 Online service . 29
1.9 Software documentation . 31

2 Methodology . 34
2.1 Selection of the development environment 34
2.2 Development of a text corpus . 36
2.3 Parsing syllables . 42
2.4 Machine learning of transcription rules 45

v

CONTENTS vi

2.5 Implementing transcription as a web service 48

3 Results . 54
3.1 Fidelity of character handling . 54
3.2 Merging source text into a text corpus 60
3.3 Characteristics of the Iu Mien text corpus 69
3.4 Parsing the syllables . 75
3.5 Mapping between the scripts . 80

3.5.1 IC3 Learning . 88
3.5.2 Neural networks with back propagation 88

3.6 Developing the web application . 108

4 Conclusion . 113
4.1 Key paradigms for this project . 113
4.2 Reliability of derived transcriptions . 114
4.3 Improving the speed and performance 120
4.4 Choice of programming environment 120

A The Thai and Lao Scripts . 123

B Source file samples . 128

C Website behavoir specifications . 134
C.1 Splash page . 134
C.2 Text submission . 135
C.3 Results page . 136

Bibliography . 141

List of Tables

1.1 Examples of spoken languages with multiple writing systems 4
1.2 Various Names Used for the Iu Mien People 11
1.3 Description of the primitives of Iu Mien syllables 15
1.4 Interpretation of regex parameters in different character encodings . . 26

3.1 8-bit Codepoints used in various codepage encodings 56
3.2 Effects of character encoding settings on the output 59
3.3 Features of the source files which were excluded from this study 62
3.4 Processing statistics in the development of the Iu Mien Corpus 63
3.5 Phrase break units found . 64
3.6 A word alignment error of New Jerusalem City from Rev 21:2:1:3:2-3 . 64
3.7 Ambiguity in the rendering the syllable yu 67
3.8 Word inconsistencies . 67
3.9 Words that contain the yu syllable . 68
3.10 The five most frequent proper names in the Iu Mien Bible 70
3.11 The five most frequent Iu Mien words in the Bible 71
3.12 Raw metrics of the Iu Mien text corpus 72
3.13 Basic statistics on the corpus retrieved from the Iu Mien Bible manuscript 73
3.14 Size of input and outcome vectors for each script 75
3.15 Correlation of rank ordering in different combinations of presyllable seg-

ments . 80
3.16 Correlation of rank ordering of different combination of syllable segments 81
3.17 Accuracy of transcripting the training set from Gen 104
3.18 Correctness of predicted outcomes using the test sets as input 104
3.19 Correctness of predicted outcomes using the training sets as input . . . 105
3.20 Accuracy of transcripting the test set from Gen 105
3.21 Residuals and coefficients of the GLM 106

vii

LIST OF TABLES viii

3.22 ANOVA of GLM . 107
3.23 Transcription of 50 random words via neural networks 107
3.24 Secondary transcriptions after transcribing 50 random words to the

Generic Script . 108
3.25 Products of Rails application setup . 109
3.26 Modules used in the online application 110

4.1 Input token size . 116

A.1 Tone marking rules for Thai and Lao scripts 124
A.2 The Thai Character Set . 126
A.3 The Lao Character Set . 127

List of Figures

1.1 Southeast Asian regions where Iu Mien orthographies are used 10
1.2 BNF representation of Iu Mien in both Roman scripts 14
1.3 Train-tracks representation of decomposition of Iu Mien in Roman scripts 15
1.4 BNF representation of Iu Mien in Thai and Lao scripts 16
1.5 Train-tracks representation of decomposition of Iu Mien in Lao and Thai

scripts . 16
1.6 Multiple readings of a given Thai text 17
1.7 Mapping between the internal representation of the generic script to the

surface forms of the other scripts . 19
1.8 Bible publishing work flow from source text held in generic script. . . . 21
1.9 A neural network where the full input context is needed for each target

phoneme. 22
1.10 Two service models for transcribing between orthographies. 23
1.11 Work flow of an online system to transcribe between orthographies . . 24
1.12 Interaction between the framework components within a Rails applications 30

2.1 Work flow used to build the Iu Mien corpus from archived text files . . 38
2.2 A regular expression definition of a Iu Mien Syllable 43
2.3 An example of a neural work . 46
2.4 Sigmoid vs step function . 47
2.5 Entity relationship diagram of the user account management 49
2.6 Entity relationship diagram of the transcription job management . . . 50
2.7 Webpage navigation map of the online transcription service 53

3.1 Effort required to align of words units in corpus 65
3.2 Comparison of normalized accumulative sum of unit frequencies 70
3.3 Normalized Zapf analysis of word frequencies in the Iu Mien corpus . . 72
3.4 Comparison of normalized accumulative sum of syllable frequencies . . 74

ix

LIST OF FIGURES x

3.5 Tokens in a Generic script syllable input vector 76
3.6 Tokens in an Old Roman script syllable input vector 76
3.7 Tokens in a New Roman script syllable input vector 77
3.8 Tokens in a Thai script syllable input vector 78
3.9 Tokens in a Lao script syllable input vector 79
3.10 Comparison of initial consonants of pre-syllables (Pre-Icn) 82
3.11 Comparison of vowels of pre-syllables (Pre-Vow) 83
3.12 Comparison of initial consonants of syllables (Icns) 84
3.13 Comparison of vowels of syllables (Vow) 85
3.14 Comparison of final consonants of syllables (Fcns 86
3.15 Comparison of syllable tone markers (Ton) 87
3.16 ID3 machine learning of transcription from the Generic script 89
3.17 ID3 machine learning of transcription from the Old Roman script . . . 90
3.18 ID3 machine learning of transcription from the New Roman script . . . 91
3.19 ID3 machine learning of transcription from the Thai script 92
3.20 ID3 machine learning of transcription from the Lao script 93
3.21 Training set vs propagated errors . 94
3.22 Test vs propagated errors . 95
3.23 Phoneme learning of Nrm syllables . 96
3.24 Phoneme learning of Thai syllables . 97
3.25 Hidden layer of Gen syllables . 99
3.26 Hidden layer of Orm syllables . 100
3.27 Hidden layer of Nrm syllables . 101
3.28 Hidden layer of Thai syllables . 102
3.29 Hidden layer of Lao syllables . 103
3.30 Login page . 111
3.31 Submitting the text . 111
3.32 Viewing the transcribed text . 112

4.1 Revised Old Roman syllable parsing 116
4.2 Revised New Roman syllable parsing 117
4.3 Revised the Thai syllable parsing . 118
4.4 Revised the Lao syllable parsing . 119

B.1 Source text in the Generic script: (3Jn 1-5) 129

LIST OF FIGURES xi

B.2 Source text in Old Roman script: (3n 1-5) 130
B.3 Source text in New Roman script: (3Jn 1-5) 131
B.4 Source text in Thai script: (3Jn 1-5) 132
B.5 Source text in Lao script: (3Jn 1-5) . 133

List of code fragments

1.1 A Regex to retrieve the initial consonant of a Thai syllable 25
1.2 A sample behavior specification in Cucumber 33
2.1 Class Bookcheck definition . 41
2.2 Definition of the finddirs method with the Bookcheck class 43
2.3 Test routines for Class Bookcheck . 44
2.4 Running Class Bookcheck from within a program 47
2.5 Method for assigning samples between the training and test set . . . 48
2.6 User data object . 51
2.7 User data object . 52
3.1 A recursive implementation of Euclid’s GCD algorithm in Thai . . . 57
3.2 Hexadecimal dump of characters found by different string iterations . 58
3.3 Converting a list of Unicode values into a UTF-8 string 61
C.1 Behavior of the splash page . 134
C.2 Behavior of the text submission page 135
C.3 Behavior of the text results . 136

xii

CHAPTER 1

Introduction

1.1 Multiple orthographies of a language

All writing systems are an attempt to use orthographic symbols to represent various

linguistic features of a language. However, individual writing systems differ in the

level of phonetic and linguistic information captured, the range of symbols used and

formal constraints governing the mapping between these entities. This is true even

when multiple writing systems are used to describe the same language.[6]

Multiple orthographies commonly arise within a language to address specific needs

of subgroups of readers. For example, the majority of readers of English are familiar

with the Roman script used in most English publications. However, this is not the only

orthography for English in current use. The visually impaired prefer Level 3 Braille

which uses contractions rendered in 6 dot Braille to improve digital reading speeds.

Linguists use the International Phonetic Alphabet (IPA) to record and describe the

regional accents of spoken English. American dictionary publishers commonly use

some variant of the pronunciation symbols derived by Noah Webster to describe

the standard pronunciation of words. Greg short hand, speed writing and court

stenographic systems are all different attempts to increase the speed and accuracy of

manual transcription of English dictation. The ideographic system of emoticons and

acronyms used in English text messaging has become very popular among Internet

users and is still evolving. Each of these writing systems of English are unique in

1

CHAPTER 1. INTRODUCTION 2

appearance and have been shaped by their function.

In Southeast Asia, local majority languages like Thai, Myanmar and Lao use

derivatives of the Devanagari script which have been shaped centuries ago by the

phonetics of the language and the writing surfaces they used.[6] However, for many

minority groups, particularly those with rich oral traditions, written orthographies

are a recent invention which is still evolving. As a minority community becomes

literate, the orthography is often revised to correct mistakes made in the design of

the original script as well as to alter the writing system so as to improve literacy.

Southeast Asia has also been a home to hundreds of small minority people groups

that have lived in the deep forests and remote mountain tops along the ancient trade

routes. Although they have lived for centuries in a manner that was unaffected by the

rise and fall of the empires of Asia, the political and economic conditions stemming

from the aftermath of World War II, colonial rule, the Cold War and Vietnam War

have facilitated the emergence of independent countries. The corresponding national

governments have attempted to seal their borders in order to reduce threats to na-

tional security arising from the smuggling of arms and opium.[7] This has introduced

new barriers to travel and communication that never existed before.

In addition, the sovereign countries have promoted nationalism and have taken

various measures to reduce the isolation of all minority groups.[8] To this end, coun-

tries like China, Vietnam and Thailand have attempted to relocate isolated villages

and even to restrict publications in the vernacular scripts of minority groups. During

the Vietnam War, governments of Southeast Asia encouraged, or even on occasions

required, minority language groups to adopt a variant of the orthography of the na-

tional language.[9] This political pressure has also given rise to multiple orthographies

for tribal people, particularly those living in regions that span national borders.

Given the turbulent history of political and cartographic changes in the past two

CHAPTER 1. INTRODUCTION 3

centuries, there are numerous cases across Asia where these geo-political pressures

have affected the writing systems of minority languages, some notable examples can be

seen in Table 1.1. The Kamut who are scattered throughout Southeast Asia have six

distinct scripts. The Pwo Karen however are confined to a single border and only have

two discrete scripts. Multiple scripts for Hindi and Mandarin arose from attempts

to include minority groups into the life of their respective nations. Recent regional

politics of Indonesia has contributed to the amazing revival and rapid reintroduction

of the Bali script which had been on the brink of extinction with only 10 readers in

1995 to over 5,000 in 2005. Over 50,000 Santali of India were contracted to build

roads in East India and were stranded by the partition of India and subsequent war

for Bangladeshi independence. In each case, publishers working with such groups

must create multiple editions of their publications in order to reach all readers of the

target language group.[10]

More recently, with the expansion of radio and television coverage of remote areas,

oral traditions have begun losing their appeal as younger generations are introduced

to the pop culture of the national majority. The extinction of tribal languages in the

Region has been growing at an alarming rate. Governments of Asia have been known

for their attempts to hasten this process by controlling vernacular publications and

literacy education.[9]

However, with increasing revenue from international tourism particularly in re-

gions with tribal people, governments have recently softened their position with local

minorities and have even encouraged education of tribal culture and traditions in

primary schools. When the education of tribal heritage has been embraced and prac-

ticed, governments have reported increased school enrollment rates, higher levels of

compliance with local health and agricultural initiatives and significant improvement

of national language literacy rates in those tribal areas.[11]

CHAPTER 1. INTRODUCTION 4

Table 1.1: Examples of spoken languages with multiple writing systems

Language Name of Script Country

Bali Bali script Bali, Indonesia
Roman script Indonesia

Hindi Romanized script Fiji
Romanized script Northeast India
Devanagari script Central India

Kamut Khmer script Cambodia
Roman script France
Lao script Laos
Myanmar script Myanmar
Roman script Vietnam
Thai script Thailand

Mandarin Simplified Chinese script China
Romanized Pinyin script China
Complex Chinese script Taiwan

China Standard script China
Old Roman script Northern Thailand
New Roman script China
New Roman script USA
New Roman script Vietnam
Thai script Northeast Thailand

Mongolian Cyrillic script Mongolia
Mongolian script Mongolia

Pwo Karen Kayin script Myanmar
Thai script Thailand

Santali Bengali script Bangladesh
Orissa script India

CHAPTER 1. INTRODUCTION 5

These benefits are less prominent when the phonemes of the tribal script have

little overlap with those of the national script because the inconsistencies are a major

source of frustration and confusion for both the teacher and the student.[12, 13] For

example, American volunteer literacy workers often find that Mien refugees consis-

tently misspell the word gong as kov. In this case, the refugees are merely being

consistent with the script of their mother tongue.[14] This confusion adds additional

pressure for the revision of orthographies of minority people.[15]

Although each individual orthography of a language provides distinct advan-

tages for their users and promoters, the differences between the various orthogra-

phies quickly form barriers to effective communication and sharing of captured text.

While the development of an application to transcribe between orthographies would

provide a communication bridge between subpopulations, the process of developing

transcription rules can be very time consuming.

Groups that are isolated by a political or international border also tend to develop

their own local orthographic rules and spellings which further complicates attempts

to communicate across borders. However, the isolation is being broken. Internet

connections are currently available in nearly every village of Asia. It is common to

see school children in remote villages of Thailand or India sending email, blogging

and spending time in chat rooms via Cyber cafes and cell phones. Online services like

Google Translate have become popular among educators and businessmen in these

remote areas. Similarly, online automated transcription services should prove useful

for helping minority groups to communicate with fellow tribesmen in a way that spans

international borders and bridges differences in orthography.

While the groups described above may seem small in number, the problem of

multiple orthographies is fairly common across Asia. In fact, the problem is not

restricted to minority languages. Hindi and Mandarin, the two largest language

CHAPTER 1. INTRODUCTION 6

groups in Asia and the world, were also included in the list of languages with multiple

writing systems given in Table 1.1. The total number of languages with multiple

scripts in current use has been estimated to be around 200 of the approximately

4,000 languages spoken in Asia[10, 16]. Publishers across Asia often print parallel

publications to distribute the same content in multiple scripts of the same language.

This current work aims to explore the use of machine learning technology applied

to the text sources of parallel editions as a means for developing auto-transcription

applications. The outcome of this work would have practical implications on efforts

to link together minority communities separated by orthography.

1.2 The value of parallel texts

Parallel texts provide excellent opportunities for data-mining and machine learning.

Ever since the Rosetta stone was used in the early 19th century to crack the secrets

of hieroglyphics, parallel texts have been used for gleaning rules for translation and

transcription. Lessons learned with hieroglyphics were quickly applied to other sets

of parallel texts to determine the phonetics of various semitic languages.[17] With

the dawn of computers and machine learning techniques, corresponding elements in

pairs of text in large parallel text sets can be tagged, linked and analyzed as a means

for unraveling the meaning of natural human language. However, a large corpus of

text can also contain noise arising from inconsistencies in text entry, regional language

variations, as well as human error. Because these errors and inconsistencies give rise to

artifacts that lower the accuracy and efficiency of the machine learning, considerable

effort is required to develop filters that would result in consistent parallel text.[18]

With the emergence of the Internet and a global economy, the growing need to

communicate in multiple languages has fueled research to develop software that can

CHAPTER 1. INTRODUCTION 7

compare dialects and languages, and apply this information in an attempt to translate

between them.[19]. This field of research has given rise to automatic translation

products like Alta Vista’s Babelfish and Google’s Translate which have become fairly

popular despite frequent mistakes in the translations produced.

However, these mistakes in machine translation illustrate the complex array of

linguistic differences between natural languages. Mere introspection of the surface

differences is inadequate to determine all the changes in the grammar, semantics and

lexicon required, as text in one language is translated into another. Incorporating

various linguistic data into the data model greatly improves the effectiveness and

efficiency of these comparative studies.[20]

The evolution of human languages has been generally driven by grammatical an-

cestry and the need to develop lexicons that can fully describe human experience.

Differences in human experience are reflected in the differences in the lexicon. For

example, the Yup’ik of Alaska have 16 discrete words to describe the various types of

Arctic snow seen in their environment[21] while the Thai of tropical Southeast Asia

only have one word. Similarly, the semantic word order and grammar of Dutch is

closer to German (with whom there has been a long history of interaction) than to

a language of a distant people like the Mandarin Chinese. Translation systems that

would attempt to compete with human translation would require a complex hybrid

data model that includes linguistic information and filters for human error within the

machine learning model.[22]

In this study, parallel texts of the same language were used to develop transcription

rules to convert between the multiple orthographies of the same language. While

machine learning of transcription rules would appear to be relatively easier than the

development of machine translation solutions, many of the linguistic and data mining

issues encountered in parallel translations can also be seen in parallel transcriptions.

CHAPTER 1. INTRODUCTION 8

Although each orthography is an attempt to capture the phonetics of the same target

language, the graphemes (or the symbols used) in the different transcription systems

do not render the phonetic features (phonemes) in the same way. In addition, spelling

of key concepts and proper names as well as the phonetics of the local majority

community influences the orthography of minority languages and can give rise to

exceptions to normal transcript rules. However, this research is hindered by the lack

of large scale parallel transcriptions.

The Thailand Bible Society and the OMF Publishers in Thailand recently launched

the Iu Mien Bible translation through the simultaneous publication in four scripts

(Old Roman, New Roman, Thai, and Lao).[2, 3, 4, 5] The source text of these si-

multaneous publications was for the most part derived from a single textbase and

represented a word by word parallel rendering of the Iu Mein text in four scripts.

The text was held in a generic script that captured all features supported by the

target orthographies. In addition, the textbase also captured the markup of textual

objects like headings and verse numbering. The 6MB generic textbase and the corre-

sponding proofread source files for each of the orthographies appeared promising as

a source of a corpus that could be used for these studies in machine learning.

Because a good text corpus must have a collection of words in content that reflects

the full range of word usage within a given language, it would be useful to ascertain

the relevance of using a Bible translation as a text corpus for this language. While

it is not entirely possible to address this issue for the Iu Mien without an exhaus-

tive unabridged dictionary of the language, a look at English would provide some

insight as to the order of magnitude of this problem. An unabridged English dictio-

nary catalogues over 300K words.[23] The average college educated American adult is

thought to have mastered between 13,200 and 20,000 English words.[24] Analysis of

English words in the The authors of the Corpus of Contemporary American English

CHAPTER 1. INTRODUCTION 9

showed that despite the large lexicon of English only 2000 words account for 90% of

all communications.[25] If an international language like English has a total of several

hundred thousand words, it would be reasonable to assume a smaller word count for

Iu Mien who live in remote area of South East Asia.

At the same time, all translations of the Bible are attempts to render 4,000 proper

names of individuals, people and locations, and 8,000 other Hebrew, Greek or Aramaic

words into a target language. For English, there is a wide range in the number of

lexical units used in the various English translations based on the intended audience

of the translation. The Good News Bible with its 4K unique words was designed for

readers of English as a second language. The literary scholars that wrote the King

James Bible used nearly 8K words to convey the message. The Amplified Bible uses

nearly 10K words. All of these English translations use all of the 2,000 most frequent

words of the English language which represent over 90% of American communications.

In summary, an English Bible translation contains 1-3% of all words of the lan-

guage and over 90% of those used in written communications. Although not as much

is known about the Iu Mien language despite years of intensive study, one might ex-

pect a similar correlation between the number of words of the Bible and the number

of words in common use in. With thousands of words from the Bible to draw on,

one can assume that a corpus based on the Bible should be large enough to draw

inferences about transcription rules between various scripts of the language.

1.3 The Iu Mien and their language

The Iu Mien generally live in remote isolated villages in the mountainous regions of

southeast Asia extending from Thailand through Laos, Vietnam and southern China.

Despite the distance between them, the Iu Mien share a common language and oral

CHAPTER 1. INTRODUCTION 10

tradition. However, the local majority community in which they live greatly influences

the use of the script in general. The most profound effects can be seen in the use of

the majority language spelling of proper names despite the difference in phonetics.

Figure 1.1 shows the geographic distribution of the orthographies used in Southeast

Asia.

Figure 1.1: Southeast Asian regions where Iu Mien orthographies are used

According to the 2009 Ethnologue,[26] there are approximately 1.7 million Mien

speakers worldwide, 1.3 million live in the south-western regions of China and 250,000

live in the mountainous region of northern Vietnam. The local governments in these

two regions encourage the use of Roman orthography. Another 100,000 live in the

mountainous regions of Laos where the Lao script is used. It is estimated that there

are also more than 40,000 Mien speakers living in northern Thailand many of which

read an old Roman script that was used in a dictionary published in 1960.[27] The

remainder of the Iu Mien readers in Thailand use the Thai script. Because of the

socio-political instability and economic hardships in Laos, Vietnam and China during

CHAPTER 1. INTRODUCTION 11

the second half of the 20th century, many Iu Mien immigrated from their traditional

homelands and approximately 250,000 have settled in Australia, North America, and

France where a New Roman script is used. Therefore, publishers for this people group

have had to develop publications in multiple scripts in order to support the different

groups of readers.

The Iu Mien refer to themselves as Kim Mien, or “men of the mountains”, but

as shown in Table 1.2, they are known by many names within the region. However,

most of the other people groups in the region refer to them as Yao which is derived

from a Chinese derogatory term for “barbarians.” It is for this reason that the term Iu

Mien is used throughout this document to refer to both the people and the language.

Table 1.2: Various Names Used for the Iu Mien People

Dao Highland Yao Mien Yao
Guangxi-Yunnan Iu Mien Min Yiu Mien
Guoshan Man Myen Youmian
Guoshan Yao Mian Pan Yao Yumian

The Iu Mien language is a tonal language consisting mainly of monosyllable words.

Some words are prefixed with an open syllable which some would consider to be a

pre-syllable. Since many foreign names are multisyllabic, special marking is required

to identify a sequence of syllables as a foreign proper name that should not be misun-

derstood or confused with phrases of Iu Mien words. In addition, there is a tone shift

when a noun is modified by an adjective. Earlier attempts to develop orthographies

explicitly marked these tone changes. However, this feature hindered the develop-

ment of standard spelling of words in the lexicon. Therefore tone changes of nouns

in context were not marked features in orthographies that were developed later.

CHAPTER 1. INTRODUCTION 12

1.4 Four major orthographies of Iu Mien

The following section provides a general description of each of the four major or-

thographies of Iu Mien studied in this project:

• Old Roman script: This script was developed and introduced by OMF Mis-

sionaries in northern Thailand and was meant as a replacement for an earlier

script derived from the French orthography. This script attempted to capture

all the phonetic features of this language, including tonal changes to nouns mod-

ified by an adjective, using individual characters found on a standard English

typewriter. The marked tone is the true tone of the syllable.

As such, this script is case sensitive with uppercase and lowercase characters

used to mark different phonetic features. In many cases, capitalized consonants

were used to mark aspirated consonants and lowercase consonants were used for

unaspirated consonants. Because no digraphs were used in this script, numerous

characters were arbitrarily mapped to phonemes in a way that would confuse

native readers of Roman script.[28]

• New Roman script: As the name implies, this script is newer than the Old

Roman script. It is used by Iu Mien refugees in America and France. It was an

attempt to correct the problems Iu Mien readers of Old Roman script had in

learning to read English and French in their new homes. Glyphs are reassigned

to phonemes more consistent with French and English phonetics. Nouns were

consistently spelled the same way regardless of whether they were modified by

adjectives or not. Capitalization was used to mark proper names and start of

sentences. Digraph sequences are used for some consonants. The script was

also adopted by the Iu Mien communities in China and Vietnam.

CHAPTER 1. INTRODUCTION 13

• Thai script: The Thai script for Iu Mien arose as a response to local govern-

ment pressure to promote Thai literacy among Iu Mien communities. In this

script, the tone marker is actually a tone class change marker which alters both

the class and reading of the initial consonant. The tone actually uttered must

be determined from a complex set of rules that considers the class of the initial

consonant, the final consonant, and the type and length of the vowel. More de-

tails of the Thai reading rules can be found in Appendix A. In addition, there

is a repeated unit marker ๆ (mai yamook) which is used to alert the reader that

the previous word is to be spoken twice.

• Lao script: The national government has been known for its strict control

of all publications within Lao. All printed material must be approved by the

government prior to printing or importation. Because it is difficult to gain such

approval for publications in tribal languages especially if a non-Lao script is

used, the Lao script is used for Iu Mien living in Laos. The complex rules for

determining tones of syllables are similar to those used in Thai. More details

can be found in Appendix A. Like Thai, the Lao script also has a repeated unit

marker ໆ (ko la) which is used to mark words that are repeated. The tones

actually uttered are determined by the Lao set of rules which are similar to

those used in Thai.

Each of these phonetic writing systems of the Iu Mien was designed to be read

as a stream of glyphs. From this stream, the reader is not only given clues to the

pronunciation of the sequence sounds to be uttered but also provided with sufficient

hints to allow correct decoding of the sentence, phrase and word units. Reading of

written text is similar to the parsing of software compilers which is often modelled in

Backus Naur Form (BNF).[29] BNF could be used to describe the decomposition of

CHAPTER 1. INTRODUCTION 14

the graphemes within syllable units in a stream of Iu Mien text. This model could

be used to generate both a computer parser of Iu Mien text as well as a train-tracks

graphical rendering to enhance understanding of the decomposition process.

<paragraph> ::= <sentence>(<sentence>) ∗
<sentence> ::= <phrase>(<whitespace><phrase>) ∗ <sentence.end.marker>

<phrase> ::= <word>(<whitespace><word>) ∗ [<phrase.separator>]

<word> ::= <syllable> ([<syllable.separator>]<syllable>) ∗
<syllable> ::= [<initial.consonant>]<vowel>[<final.consonant>][<tone>]

Figure 1.2: BNF representation of Iu Mien in both Roman scripts

The general description of the BNF and train-track representations of Iu Mien

in the Roman scripts are given in Figures 1.2 and 1.3, respectively. At this level of

abstraction, the two scripts are essentially the same. It is noteworthy that in theory

only a vowel and sentence terminator could define a whole utterance. In fact, such is

the case with exclamations commonly used to express surprise, fear or pain.

The chief difference between the Roman scripts occurs in the definition of the

primitives. As shown by Table 1.3, the Old Roman Script uses case-sensitivity to

render the full range of initial and final consonants when the New Roman script

employs multiple case-insensitive glyphs. In addition, the New Roman script uses

character sequences that are closer to English phonetics in an attempt to facilitate

the acquisition of English and French as a second language by the refugee community.

The Lao and Thai scripts share similar syllable decomposition patterns with the

main difference occurring in the characters used and the range of sounds supported.

These scripts are different from the Roman scripts described above in two ways. The

vowels are broken into 3 segments that surround the initial consonant and an initial

CHAPTER 1. INTRODUCTION 15

Figure 1.3: Train-tracks representation of decomposition of Iu Mien in Roman scripts

Table 1.3: Description of the primitives of Iu Mien syllables

Primitive Old Roman Script New Roman Script
<initial.consonant> Single case-sensitive glyph Multiple case-insensitive glyphs

<vowel> Multiple case-sensitive glyphs Multiple case-insensitive glyphs
<final.consonant> Single case-sensitive glyph Multiple case-insensitive glyphs

<tone> Single character glyph Single character glyph

consonant marker is required for each syllable. (Open syllables use a vowel marker as

the initial consonant.) The BNF and train-tracks representations of Iu Mien in the

Lao and Thai scripts are given in Figures 1.4 and 1.5. More details on these scripts

can be found in Appendix A.

Successful writing systems tend to exhibit low levels of ambiguity in the decom-

position of the text by a simple rule that symbols comprising in any one phoneme

(depicted by a balloon in the train-tracks representation) cannot be members of any

CHAPTER 1. INTRODUCTION 16

<paragraph> ::= <sentence>(<sentence>) ∗
<sentence> ::= <phrase>(<whitespace><phrase>) ∗ <sentence.end.marker>

<phrase> ::= <word>(<whitespace><word>) ∗ [<phrase.separator>]

<word> ::= <syllable> ([<syllable.separator>]<syllable>) ∗
<syllable> ::= [<leading.vowel>]<init.cons>[<vowel.tone>][<final.const>]

<vowel.tone> ::= [<superimposing.vowel>][<tone.marker>][<trailing.vowel >]

< init.cons > ::= [<consonant.class.modifier>]<initial.consonant>

Figure 1.4: BNF representation of Iu Mien in Thai and Lao scripts

Figure 1.5: Train-tracks representation of decomposition of Iu Mien in Lao and Thai
scripts

CHAPTER 1. INTRODUCTION 17

preceding or subsequent balloon.[6]. When this rule applies, it reduces the number

of possible readings. However, this is not the case in all writing systems currently in

use. For example, standard Thai and Lao text sequences exhibit a significant level

of ambiguity. In these scripts, final consonant symbols are also used as initial conso-

nant symbols. Without syllable or word boundary markers, alternative readings are

possible as seen in the Thai text in Figure 1.6. Through the introduction of syllable

and word break markers, the Iu Mien has eliminated this problem in their use of Thai

and Lao scripts.

ตากลม
↙ ↘

ตา กลม ตาก ลม
dha glom dhak lom

(large eyes) (airing in the wind)

Figure 1.6: Multiple readings of a given Thai text

Given the similarities mentioned above, it would appear that converting between

two Roman scripts or between two Non-Roman scripts would be relatively easier

than converting between a Roman script and a non-Roman script. The key differ-

ences between Roman and non-Roman scripts are described below. Each of these

points increases the complexity of the transcription process and can be attributed to

significant differences in phonology.

• Complexity of the tone marking: In the Roman script, the tone marker

represents the actual tone to be read. In the Thai and Lao scripts, the tone

marker generally modifies the effective class of the initial consonant. The spoken

tone register is determined by the effective class of the initial consonant, vowel

and final consonant.

CHAPTER 1. INTRODUCTION 18

• Multiplicity of the initial consonants: While each consonant of the Roman

script is associated with a unique phoneme, many of the consonants in the Thai

and Lao scripts share the same phoneme and differ only by the range of tones

they support.

• Vowel markers: While the Roman scripts use a sequential and contiguous

sequence of vowel markers to represent the different vowel sounds, the Thai and

Lao scripts break the vowel into 3 separate segments that surround the initial

consonant. All three parts must be read together to determine not only the

intended vowel sound but the length and tone registers of the syllable as well.

The success of the Bible translation project was due to the selection of an inter-

nal representation that supported all the features of every script. Custom software

provided the means to map from this format into the published scripts. As can be

expected, the mapping was not trivial and did not correlate to a one-to-one mapping.

Figure 1.7 illustrates the complex relationships between the phonemes of the internal

representation and those of the various surface forms. For example, in the case of

the vowels, the internal representation maps directly to single units in the Old and

New Roman scripts, but upto 3 separate segments that surround the initial consonant

when transcribed into Thai or Lao scripts.

1.5 A text corpus from the Iu Mien Bible transla-

tion

Having multiple scripts for Iu Mien has made it difficult for publishers to develop

publications that reach all segments of this group of people. Although there had

been several attempts to develop software to facilitate multi-script publications, the

CHAPTER 1. INTRODUCTION 19

Figure 1.7: Mapping between the internal representation of the generic script to the
surface forms of the other scripts

initial attempts failed because the programming environment used did not have a

convenient way of handling the complex context sensitivity. When the Cat’s Paw

port of SNOBOL4 to MSDOS became available in 1983, a prototype of a transcription

engine was developed in SNOBOL4 soon after. This transcription software was used

to successfully support the simultaneous 1988 publication of a Iu Mien hymnbook

in 3 script editions (Old Roman[30], New Roman[31] and Thai[32]), from a single

manuscript rendered in the Old Roman script. With a few minor revisions, the

prototype multiple script publishing system was upgraded to support the transcription

of the Iu Mien New Testament which was published in 1995. During the publication of

the full Bible translation in 2001, software was developed to support the transcription

of the text into the Lao script for use among Iu Mien living in Laos. This allowed

CHAPTER 1. INTRODUCTION 20

for the simultaneous publication of the Bible in 4 scripts of Iu Mien from a single

manuscript.

The generic meta-script used for capturing the text of the Bible translation was

primarily based on the Old Roman script with some additional markers added to

support any features of the language that are rendered in the other Iu Mien tran-

scription systems. These features included capitalization of proper names, standard-

ized spelling of modified nouns and disambiguation of homographs unique to the Old

Roman script. A system of software tools was developed to render and typeset the

text in each target script. The correspondence between the different scripts in this

internal form is shown in Figure 1.7.

Throughout most of the Bible translation project, all Iu Mien text was captured

and edited in the generic script manuscript file. The publishing system developed

for this project is shown in Figure 1.8. With this software, PDF review copies could

be generated automatically in each of the target scripts and sent to the respective

reviewers. All changes to the text were made in the generic script files. Throughout

the life of the project, changes made to the generic script were seen in generated

manuscript files which were in turn processed by TEX to generate the printed copies.

Tables of exceptions were developed to support script-specific renderings that could

not be handled by the rule-based software. By the end of the project there were about

100 entries in each exception table.

With the successful launch of the Iu Mien Bible translation, the separate manuscript

files of 4 transcriptions comprise a significant corpus of text in multiple, parallel

scripts. This valuable resource opens new opportunities for applying machine learn-

ing techniques to develop auto transcription software. It also facilitates research on

the support of publishing from any of the 4 major scripts of this language. However,

in order to meet publishing deadlines, late stage corrections and typesetting markups

CHAPTER 1. INTRODUCTION 21

Figure 1.8: Bible publishing work flow from source text held in generic script.

were introduced manually into the individual manuscript files. This made it possible

for various errors and inconsistencies to arise between the individual transcriptions.

Given the amount of manual editing done under time pressure of the last stage of

typesetting, one can expect that data cleansing would require a significant amount of

effort before the separate text files can be merged into a single text corpus suitable

for these studies.

Assembling the text corpus required loading the Bible text into a database and

parsing the words and syllables into the 4 main components of a Iu Mien syllable

(initial consonant, vowel, final consonant and tone marker). These entries in the text

corpus facilitated the comparison of source glyphs to target glyphs. It also provided

CHAPTER 1. INTRODUCTION 22

the resources for generating learning and test sets required by supervised machine

learning technologies. Figure 1.9 shows a worst case scenario where every phoneme

in a syllable can only be determined after analysis of the full context from the input

script. This would require a neural network that could potentially require thousands

of nodes and exhaust the available resources and/or exceed the statistical limits of the

text corpus. Fortunately, techniques like decision tree analysis provide opportunities

for pruning the neural network to a more compact and efficient network.

Figure 1.9: A neural network where the full input context is needed for each target
phoneme.

This study also aims to determine which strategy shown in Figure 1.10 would

CHAPTER 1. INTRODUCTION 23

be most appropriate for supporting the transcription of multiple scripts from any of

the written scripts. A two step strategy involves converting an input script into a

generic script before transcription. This strategy requires only 8 sets of transcription

rules to support all 4 scripts. In addition, it would be easier for such a system to

monitor accuracy by comparing the original text to reconstituted text in the same

script. However, this introduces a 2-step transcription process which could increase

the amount of processing time and decrease the accuracy of the output.

A two step model Direct transcription

Figure 1.10: Two service models for transcribing between orthographies.

As shown in Figure 1.10, an alternative strategy would be to hold 12 sets of tran-

scription rules that support direct transcription between any source script and its

corresponding 3 target scripts. This approach has the potential of reducing the pro-

cessing time, and should result in more accurate results especially when similarities

between scripts can be exploited. By bypassing the generic script altogether, this

strategy also holds better promise for ongoing development. The generic script was a

by-product of the Bible translation project and currently has no stakeholders inter-

CHAPTER 1. INTRODUCTION 24

ested in further development of this part of the text corpus. Any strategy that does

not require the generic script would help facilitate the inclusion of other new textual

material into the text corpus from other multiple script publications.

The work flow for both strategies are shown in Figure 1.11. The two step transcript

would follow the path of the red arrows and direct transcription would follow the blue

arrows.

Figure 1.11: Work flow of an online system to transcribe between orthographies

CHAPTER 1. INTRODUCTION 25

1.6 Support for Unicode encodings

This project uses Roman, Thai and Lao scripts to encode Iu Mien words. The multi-

script nature of this project makes this project vulnerable to undocumented features

and bugs of both application software and operation systems especially since the

source files were encoded in legacy 8 bit proprietary codepages. Editing software like

Microsoft Word is designed to catch common English, Thai or Lao misspellings and

non-standard characters. However, correct Iu Mien character sequences in the source

files are often flagged as typos. While the spell checker can be turned off, there are

some character sequences that cause Microsoft Office 2007 products to enter a mode

of operation that prevents entry of additional characters until one of the preceding

characters is removed.

However, this is not the only problem requiring attention. At this time, not all

programming languages and application software provide full support for Unicode

characters and extended ASCII character sets that use the full 8 bits of a byte (8-bit

ASCII). The ability to handle Thai and Lao characters as distinct entities is essential

to this project and can be demonstrated with a simple, 3-character regular expression

(regex) as shown in Code Frag. 1.1.

initial_consonant = string.match/[ก-ฮ]/

Code Frag. 1.1: A Regex to retrieve the initial consonant of a Thai syllable

As per regular expression parsing of character ranges, any misinterpretation of

the entities on either side of the hyphen character will change both the content and

range of characters selected. Unfortunately, various interpretations of standard char-

acter encoding make it hard to capture a non-Roman regular expression as shown in

CHAPTER 1. INTRODUCTION 26

Table 1.4.

Table 1.4: Interpretation of regex parameters in different character encodings
(See Code Frag. 1.1)

Input Character representation
Encoding Interpretation ก - ฮ

8-bit ASCII 8-bit ASCII (bytewise) \xa1 \x2d \xce
8-bit ASCII Unicode (Thai codepage) \x0e01 \x2d \x0e2e
8-bit ASCII Unicode (Latin I codepage) \xc2a1 \x2d \c38e

UTF-8 8-bit ASCII (bytewise) \xe0\xb8\x81 \x2d \xe0\xb8\xae
UTF-8 8-bit Thai codepage \xa1 \x2d \xce
UTF-8 8-bit Latin I codepage \x04 \x2d \x04
UTF-8 Unicode (characterwise) \x0e01 \x2d \x0e2e

As shown in Table 1.4, if software was designed to support Unicode, the 3-byte se-

quence of UTF-8 would be correctly interpreted as a single code point in the Unicode

set. If Unicode support is lacking all together, each Thai UTF-8 encoded letter will

actually be handled as a string of 3 bytes. Partial support usually means converting

Unicode character codepoints to the corresponding codepoints in the default code-

page. Thus, if a Thai code page is in operation, this conversation results in mapping

Thai characters from the Unicode standard to the corresponding character within the

TIS620 standard code page. However, most installations of Windows, Linux and Mac

used in America, Australia, Africa and Europe default to Latin I which is a collection

of accents used with the Roman script. In these cases, the Thai letters will be lost as

they map to a missing character code point. Under these conditions, it is possible to

lose the Thai text if the file is saved or updated.

A similar pattern can be seen with 8-bit ASCII set. If these letters are handled

as 8-bit units, there is no change of the code point values. However, most operating

system services attempt to convert the upper ASCII characters to their Unicode

equivalence depending on the default codepage. Saving or updating text under these

CHAPTER 1. INTRODUCTION 27

conditions can also result in data corruption and loss.

This project will depend on careful selection of the components of the development

environment to insure that none of them will introduce anomalies into the database

and software developed. The reliability of the software can be verified with test files.

1.7 Machine learning of transcription

The text corpus of the parallel Iu Mien text can be broken down to create parallel

lists of words in each script. Each word can then be broken down to create a parallel

list of syllables. In turn the syllables give rise to a parallel list of phonemes. The

phonemes form the basis for supervised machine learning of transcription. This study

will focus on the use of the following two common techniques:

• Decision tree learning: Decision tree learning is capable of rule induction

from the data. In this form of machine learning, various combinations of input

attributes are paired to corresponding outcomes. This selection process is then

reordered to produce the most efficient selection of outcomes based on the in-

puts. Decision tree learning algorithms order the conditions according to their

corresponding entropies which is used as a measure of doubt about the possi-

ble conclusions. Entropy is determined according to measured probabilities, as

shown in Equation 1.1.

entropy = −
n∑

i=1

p(ci|aj) log2 p(ci|aj) (1.1)

The induction of the decision tree is achieved by multiple iterations which re-

move high entropy attributes so as to identify the next sub-tree that represents

the most number of leaves of a common outcome. However, this iterative pro-

CHAPTER 1. INTRODUCTION 28

cess often proves wasteful and impractical when applied to real world problems.

The Iterative Dichotomiser 3 (ID3) algorithm developed by Ross Quinlan[33]

improves the efficiency of this search by creating an initial decision tree from a

sampling of the data. The initial decision tree is then used to identify new at-

tribute vectors in the rest of the training set that were not handled by the initial

rules. The newly discovered attribute vectors are then added to the sampled

training set of vectors to generate a new decision tree. The final decision tree

can be used to simulate transcription between phoneme markers of different

scripts.

• Neural network with backpropagation: Neural network infers a function

through the use of weighted links in hidden layers which connect inputs to ex-

pected outcomes. In 1974, Paul Werbos devised a method in which errors could

be backpropagated within a learning mode of the neural network.[34] This math-

ematical operation would adjust the weights appropriately thereby improving

the accuracy of the network output. After many iterations, the adjustments

result in a network that models the expected outcome. The resulting network

can be used to calculate the most likely equivalent phoneme marker in a target

script given the source script phonemes of a syllable.

In both machine learning techniques, the technology was designed to select a

single outcome from multiple choices. However, there are potentially thousands of

discrete syllables in the Iu Mien, and it would be impractical to come up with a

single decision tree or neural network to map the syllable transcription rules directly

from one script to another. However, automated transcription could be simulated

by generating separate decision trees or neural networks for each phoneme of an Iu

Mien syllable. Assembling the outcomes for each phoneme network would result in

CHAPTER 1. INTRODUCTION 29

a predicted rendering of the syllable, even for syllables that do not occur in the

corpus used in this study. Using the resulting decision trees or neural network in a

web application would provide the general public with access to this technology and

would help to determine if the rules generated from this corpus have wider application

within other literary domains of Iu Mien.

1.8 Online service

This study aims to deliver the transcription service online in the form of a Ruby on

Rails application running on top of the web services of Heroku which was founded

in 2007 as a cloud application platform for Ruby and was built upon the services

provided by the Amazon Elastic Compute Cloud (Amazon EC2). The system was

set up so that Ruby on Rails applications could be designed and developed locally.

Once the applications are written and tested, they could be deployed to the cloud

using version control commands of GIT. As a cloud based solution, the system monitor

provides practical tools for measuring performance and use of computing resources.

It also has the potential for handling bottlenecks and future expansion if the service

becomes possible.

The Rails framework was chosen for developing an online transcription application

because of its clear and consistent design which facilitates web development.[35] Rails

has been implemented as a 3 part MVC architecture consisting of the following:

• model (M) : which captures the class definition of the data objects held in a

database.

• view (V) : which renders data in an appropriate format.

• controller (C) : which interprets the user’s request and heralds a response by

CHAPTER 1. INTRODUCTION 30

querying appropriate resources (both data objects and view renderings).

The Rails development framework also provides the developer with design tools

and data structures that facilitate both object-oriented and behavior driven design.

In addition, links between objects are fully supported by the relational attributes of

Rails, such as has_many and belongs_to. Once the data of an application has been

defined, command scripts are used to generate much of the required code automati-

cally.

Figure 1.12: Interaction between the framework components within a Rails applica-
tions

The resulting web application leverages the MVC framework to respond to user

commands as shown in Figure 1.12. When users issue a request from their browser,

the hosting server forwards the request to the dispatcher that routes the request

CHAPTER 1. INTRODUCTION 31

to appropriate controller which may redirect the request to another controller. A

controller can also herald the relevant data by issuing queries to databases via the

Active Record. The responses are collected and sent to the rendering engines that

respond via standard http, AJAX, or email.

In this way, a Rails web development programmer has the advantage of an easy-

to-use, powerful and flexible web development framework that focuses on the data

classes and application behavior, instead of centering on the details of the individual

web page objects as is common to other traditional web development platforms, such

as PHP and Perl.1 By leveraging this new technology, transcription rules developed

through offline experiments can be easily adapted into a web application for testing

by the larger Iu Mien community. [36]

1.9 Software documentation

The long term goal of this project is to make the databases and software resulting from

this project available to the Iu Mien community for continued use and development

by those who provide technical support to its publishers. As such, every effort has

been made to document the working copies of the software and data structures in a

fashion similar to literal programming.[37] The goal is to provide insights not only into

how the software works but also into the reasoning behind the programming decisions

made. While literate programming promotes the creation of better software, it works

best when all components of a system are kept in a single source file in which the

author has both described and defined the software in an pedagogical order that is

consistent with what Knuth calls “a continuous stream of consciousness”.[38] While
1It should be mentioned that the value of Rails has not gone unnoticed by web developers using

Perl, PHP or Python. cakePHP for PHP, Django for Python and Catalyst for Perl were inspired by
Rails and have seen popular and rapidly growing support within their respective communities.

CHAPTER 1. INTRODUCTION 32

the components are developed in human logical order, software utilities are required

to restructure the source code into the order required by the compiler.

However, the chief benefit of using the Rails framework comes from allowing the

associated Rails scripts to automatically generate hundreds of files, many of which

will require only minor editing and updating. At this time, literate programming

tools for Rails still do not exist. Instead, Ruby is shipped with RDOC, a built-in

documentation module, which automatically generates a web of documentation from

the class definition libraries. While overviews would require separate text files, de-

scription classes of objects as well as the attributes and methods are gleaned directly

from the comments embedded in the code. While this is not exactly literate program-

ming, RDOC does provide new readers of the code rapid access to the thoughts of

the programmer and the implementation of the solution in code.

Ruby also supports both integrity and unit testing which are powerful paradigms

for ensuring correctness of behavior from even the earliest stages of the project.[39]

While units are tested as a series of assertions about expected values attributes or

responses of methods, integrity tests deal with the responses seen at the user interface

and can demonstrate the behavior of the system. These tools help to enforce a useful

discipline of regular and frequent testing which is needed to ensure regular measured

progress while minimizing unwanted surprises at the time of launch.[40]

One of the most recent additions to the Rails utilities is a behavior testing frame-

work known as Cucumber[41]. Cucumber is built on a language called Gherkin which

has only eight key words. The Gherkin interpreter was designed to be able to parse

a detailed description of expected software behavior written in natural language. In

this way, Cucumber documents serve as both system design documentation as well as

specifications for automated testing. A simple description of login behavior captured

in Cucumber is shown in Code Frag. 1.2.

CHAPTER 1. INTRODUCTION 33

Feature: Login authentication
As administrator to the site
I want to restrict access to the system configuration pages
In order to secure and protect the online service

Scenario: Unauthorized request for an admin page
Given I have logged in as 'testuser'
When I request 'admin services'
Then I should see 'You do not have permission to open this page'

Scenario: Authorized request for an admin page
Given I have logged in as 'adminuser'
When I request 'admin services'
Then I should see 'Welcome to Admin Services'

Code Frag. 1.2: A sample behavior specification in Cucumber

Cucumber specifications provide an opportunity for the programmer, system de-

signer and end user to capture and share use cases and behavior descriptions in a

human readable form. At the same time, each scenario in the specifications is read

and executed as a test case by the system which is used to validate the behavior of

the end product. This approach has great value not only for verifying that all major

features have been included and tested, but it also helps to ensure correct operation

at all phases of the project. This test framework has proven to be invaluable for en-

suring continued operation even during major upgrades and refactoring of the source

code.[42]

From the onset of this project, the objective has been to use best practices to

develop a useful online transcription service that draws inferences from published

texts and is built on reliable, documented and tested software. The following chapters

will describe the measures taken and how well these goals have been realized.

CHAPTER 2

Methodology

2.1 Selection of the development environment

The source files of the Iu Mien Bible text used for this project were encoded in

either ASCII (in the case of both Old and New Roman scripts) or in legacy 8-bit

character encodings for the Thai and Lao script versions. In the case of the Thai script

source files, the encoding of the Thai characters are identical to the current standard

codepage TIS-620. However, the Thai fonts used with the source files also used upper

ASCII code-points (i.e., those with values greater than 127). These non-standard code

points were used to encode the no-break space, dash and bullet ligatures, Thai vowel

and tone variant glyphs, and smart quote characters. Fortunately for the purposes of

this study, the Iu Mien translation project primarily used character encodings instead

of remapped glyph codepoint values.

However, some non-standard glyphs and character sequence of Thai vowels and

tones were introduced by Thai word processors during the late stages of proofreading

of the Bible. While this problem does not occur often and can be overcome by

converting the non-standard glyphs to their UTF-8 equivalent character, most window

systems will totally reject both non-standard characters or standard characters out

of sequence.

In contrast, the Lao character set was a proprietary codeset, and a full remapping

was required to convert it to the current Windows Lao codepage and UTF-8 code

34

CHAPTER 2. METHODOLOGY 35

points. However, the standard Windows 7 text interface generally rejected 12 of the

Lao characters and remapped the rest to accented Roman UTF-8 codepoints. In MS

Office products, these characters were subject to even further modification due to

autocorrection of the case accented of Roman characters.

Given this situation, a series of test files were generated to ensure that all systems

and software applications supported the full range of characters without changing

or omitting any. The following files were generated in binary mode using a program

written in Ruby and their values were confirmed by inspection of a hexadecimal dump

of the contents and by visual inspection of the characters in the Firefox html browser

with the appropriate setting of the character encoding.

• allcodetest.txt: a sequential set of 256 bytes ranging in values between 0 and

255, useful for testing 8-bit ASCII handling.

• unicodetest.txt: a Unicode-encoded listing of ASCII characters, and a com-

plete set of Thai and Lao consonants. Common combinations of Iu Mien con-

sonants vowels and tones are also included to verify the proper handling of

non-standard character sequences.

• thaichrtest.txt: an 8 bit-encoded listing of ASCII characters, Thai consonants

with common combinations of vowels. Common combinations of Iu Mien con-

sonants, vowels, and tones are also included to verify the proper handling of

non-standard character sequences.

• laochrtest.txt: an 8 bit-encoded listing of ASCII characters, Thai consonants

with common combinations of vowels. Common combinations of Iu Mien con-

sonants, vowels, and tones are also included to verify the proper handling of

non-standard character sequences.

CHAPTER 2. METHODOLOGY 36

The following test protocol was developed to ensure that systems and software

could handle these files reliably. At the shell level, the files were copied as files as

well as displayed text dump that was redirected to another file. The output of these

files was compared with the original test files. The cut and paste operations were

also used and the saved text was compared bytewise. Applications were tested by

opening the text files, introducing a couple of spaces and then saving back to another

file. The accuracy of the cursor control was tested by conveying the cursor over the

common sequences before adding a space. The position of the spaces introduced

into the saved files was compared with the intended position. Likewise, attempts

were made to delete specific tone marks and vowels from multicharacter sequences to

determine whether deletion of vowel and tones in multicharacter units was designed

as a character by character operation or handled as a stack of diacritical marks.

The results of this preliminary study were used to select the software and operating

systems used for this project. Although the initial decisions were made over five years

ago, these tests had to be repeated regularly to ensure that upgrades to the software

development environment did not bear unwanted surprises.

2.2 Development of a text corpus

Attempts were made to merge the original generic script file with the edited source

files of the Old Roman, New Roman, Lao and Thai script editions of the Iu Mien

Bible. Samples containing the corresponding introduction and initial 5 verses of 3

John are included in Appendix B along with more detail of the nature of the file

structure of these textbases.

These 5 sets of text files were combined into a single text corpus that could be

used for this study. This involved writing software filters to read the text and its

CHAPTER 2. METHODOLOGY 37

associated text markup in order to break the text at appropriate places. Because all

editions were originally derived programmatically from the same generic script source

files, the punctuation and line breaks are generally located at the same place in all

samples. These markers were used to synchronize the parallel text from each script.

However, there was a significant amount of manual correction of individual files

during the last stages of the copy editing of the Bible manuscript. This process

introduced a number of anomalies into the source files. Even the short samples given

in Appendix B contain some anomalies between the versions. (Figure B.4 has new

markers (\gb, and \ths) that were added only to the Thai script version.)

The process of merging the separate text files into a single text corps was accom-

plished with a series of object classes designed to progressively decompose the original

source text into sets of smaller and smaller parallel fragments using specific textual

elements as break points and delimiters. Within each stage of decomposition, the

resulting fragments were sorted and combined together into an intermediate textbase

which contained the corresponding text fragment for each of the 5 source files and

the reference citation. The work flow of this process is shown in Figure 2.1.

Methods to check the resulting textbase for discrepancies and to ensure consis-

tency were also added. The content of parallel units was tested for completeness by

comparing the relative string length of the parallel entities. Strings exceeding by 1

standard deviation of the relative string length were manually inspected and corrected

to reduce the possibility of having missing or mis-allocated text. This approach was

used to remove comments, typesetter remarks and similar anomalies as well as to

correct for frame shifts in the text base due to missing synchronization markers. Any

errors and coding inconsistency were corrected before applying a subsequent class to

the resulting textbase.

CHAPTER 2. METHODOLOGY 38

Fi
gu

re
2.

1:
W

or
k

flo
w

us
ed

to
bu

ild
th

e
Iu

M
ie

n
co

rp
us

fro
m

ar
ch

iv
ed

te
xt

fil
es

CHAPTER 2. METHODOLOGY 39

In this way, it was possible to create a corpus with a verifiable level of correctness.

The different classes used in this break and merge process are shown in Figure 2.1

and are described below:

1. chkbookdir: The text was checked to ensure that the directories for each book

of the Bible were available for processing.

2. chkchpfiles: The archive was checked to ensure that all source text files were

accounted for. File naming inconsistencies are handled; missing text files were

replaced.

3. brkchps: The text was broken down by chapters and the text for each chapter

was combined together. Introductions were marked as Chapter 0 in order to be

able to separate Biblical text from commentary with the hopes of later studying

the influence of Hebrew, Aramaic and Greek phonetics on the machine learning

at a later time.

4. brkverses: The text was separated into the corresponding verse text units.

This approach not only provided a set of reference markers but also created

milestones to provide a frame of reference for checking the text with that of the

printed copies.

5. brkparagraphs: For any given verse, the text was broken by paragraph tags

which corresponded to section headers, divisions of paragraphs and top level

stanzas of poetry.

6. brksentences: This level broke the text by sentence-terminal punctuation such

as !?. Some adjustments were required to ensure that all parallel units were

present.

CHAPTER 2. METHODOLOGY 40

7. brkphrases: This level of separation broke on the text on all phrase terminal

punctuation such as ,;: Some adjustments were required to resynch units that

were entered manually without corresponding punctuation.

8. brkwords: This level of separation broke the text into parallel units of either

proper names or white-space delimited words. The resulting textbase formed

the basis of a SQL database of unique words and proper names used for testing

word level processing.

9. brksyllables: This separated words and proper names into a list of syllables.

The resulting textbase formed the basis of a list of unique parallel units of

syllables.

10. brkphonemes: Corresponding syllables were broken down into an object ori-

ented database of graphic units used to render the basic phonemes of Iu Mien

syllables, (i.e, initial consonant, vowel, final consonant and tone marker). The

results of this step were used for the parallel units of source and target text

needed for supervised learning of auto-transcription. The records of this textbase

were randomly divided between test and training sets for each attempt at su-

pervised learning.

To simplify the development, testing and refinement of the software code used in

this text process, each of the above stages represents a separate class of processing.

This allowed for better control over the appropriate rules and exceptions that were

needed at each stage. To illustrate this modular structure, the code for the first class

in this process is given in Code Frag. 2.1

As shown in Code Frag. 2.1, this sample code of a class definition illustrates

the way Ruby encapsulates related constants, attributes, getter and setter functions

CHAPTER 2. METHODOLOGY 41

#! /usr/ruby
Class Bookcheck - checks availability of source text directories
(c) Copyright 2011 by Robert Batzinger
class Bookcheck

attr_accessor :rootdir, # root directory of archive
:scripts, # array of subdirectory names for each script

:dirlist, # Hash of book subdirectories found for each script
:err # collection of errors found

A list of a standard Bible Book abbreviations
BIBLEBKS = "GEN|EXO|LEV|NUM|DEU|JOS|JDG|RUT|1SA|2SA|1KI|2KI|" +

"1CH|2CH|EZR|NEH|EST|JOB|PSA|PRO|ECC|SNG|ISA|JER|LAM|EZK|" +
"DAN|HOS|JOL|AMO|OBA|JON|MIC|NAM|HAB|ZEP|HAG|ZEC|MAL|MAT|" +
"MRK|LUK|JHN|ACT|ROM|1CO|2CO|GAL|EPH|PHP|COL|1TH|2TH|1TI|" +
"2TI|TIT|PHM|HEB|JAS|1PE|2PE|1JN|2JN|3JN|JUD|REV"

Constructor input parameters:
* rootdir: root directory of the project archive
* dirs: array of subdirectory names for each script
def initialize(rootdir,dirs)

@rootdir = rootdir
@scripts = dirs
@dirlist = Hash.new()
@errs = Array.new()

end

CLASS METHODS WOULD BE INCLUDED HERE ...

end

Code Frag. 2.1: Class Bookcheck definition

CHAPTER 2. METHODOLOGY 42

within the code of the class definition. In addition, all comments, attributes, methods

and parameters were automatically collected by the RDOC utility into a network of

web pages which document the system.

At the same time, additional code was appended to the end of each class definition

file to create an instance of the class and test the key methods provided. This approach

facilitated the development by creating a comprehensive test of each class method

within the definition of each class of this project. In this way, running the class

definition file as a program resulted in an exhaustive test of the various methods of a

class. However, including a class definition within another Ruby file (via the require

operator) would result in the test code being ignored. Code Frag. 2.4 contains the

code from the bottom of the Bookcheck Class (whose class definition is given in Code

Frag. 2.1). The conditional statement on the first line of this fragment is used to

determine if the class definition was loaded in test mode or not.

To complete this example, the actual code to run the book check is given in

Code Frag. 2.4. The Ruby require directive was used to load the class definition

into memory during script program execution. The Ruby utility RDOC was used to

assemble the programming documentation into a web of pages.

2.3 Parsing syllables

Regular expressions were developed, tested and used for syllable parsing in these

studies. Some preliminary studies were undertaken to attempt a machine learning of

the parsing of Old Roman syllables. As shown in Figure 2.2, the Old Roman script

is relatively easier to parse because of the low number of character sets involved.

The following three basic approaches to machine learning of parsing rules were

attempted and compared against the results obtained by hand-crafted regular ex-

CHAPTER 2. METHODOLOGY 43

finddirs - Makes a hashed list of all source directories found
and compiles a list of errors for follow up

def finddirs
if Dir.exist?(@rootdir)

scripts.each {|script|
BIBLEBKS.split('|').each {|bk|

puts "Processing: #{bk}"
workdir = [@rootdir,script, bk].join('/')
worklabel = "#{bk}\|#{scrip}"
if Dir.exist?(workdir)

@dirlist[worklabel] = workdir
else

@errs.push("#{worklabel}: (#{workdir}) Missing")
end

}
}

else
@errs.push("Root dir: (#{@rootdir}) Missing")

end
end

Code Frag. 2.2: Definition of the finddirs method with the Bookcheck class

presyllable syllable

ORM
︷ ︸︸ ︷[
(consp)(vowelp)

]
?︸ ︷︷ ︸

︷ ︸︸ ︷
(consi)(vowel+)(consf)?(tone)?︸ ︷︷ ︸

NRM
︷ ︸︸ ︷[
((consp)(vowelp)

]
?︸ ︷︷ ︸

︷ ︸︸ ︷
(consi+)(vowel+)(consf)?(tone)?︸ ︷︷ ︸

TAI
︷ ︸︸ ︷[
(consp)(vowelp)

]
?︸ ︷︷ ︸

︷ ︸︸ ︷
(voweli?)(consi+)(vowels?)(tone?)(vowelp∗)(consf)?︸ ︷︷ ︸

LAO
︷ ︸︸ ︷[
(consp)(vowelp)

]
?︸ ︷︷ ︸

︷ ︸︸ ︷
(voweli?)(consi+)(vowels?)(tone?)(vowelp∗)(consf)?︸ ︷︷ ︸

Figure 2.2: A regular expression definition of a Iu Mien Syllable

CHAPTER 2. METHODOLOGY 44

if __FILE__ == $0
Test hash
TESTUNITS = {'AAA' => ["GEN","EXO","LEV","NUM","DEU"],
'BBB' => ["GEN","EXO","NUM","DEU"], # missing one
'CCC' => ["GEN","EXO","LEV","NUM","DEU"]}

TESTDIR = 'testdirectory$$$'
chk = Bookcheck.new(TESTDIR, ['AAA','BBB','CCC'])
chk.finddirs
assert("Root dir.+missing", chk.errs[0])

Create test units
Dir.mkdir('testdirectory$$$')
TESTUNIT.keys.each {|inx|

Dir.mkdir([TESTDIR,inx].join('/'))
TESTUNIT[inx].each {|bk|
Dir.mkdir([TESTDIR,inx, bk].join('/'))
}

}
chk = Bookcheck.new(TESTDIR, ['AAA','BBB','CCC'])
chk.finddirs
assert(5,chk.dirlist.grep(/AAA/).length)
assert(4,chk.dirlist.grep(/BBB/).length)
assert("#{TESTDIR}/BBB/LEV",chk.errs.grep(/BBB/)[0])
assert(5,chk.dirlist.grep(/CCC/).length)

Kill the test directory
TESTUNIT.keys.each {|inx|

TESTUNIT[inx].each {|bk|
Dir.rmdir([TESTDIR,inx, bk].join('/'))
}
Dir.rmdir([TESTDIR,inx].join('/'))

}
Dir.rmdir('testdirectory$$$')

end

Code Frag. 2.3: Test routines for Class Bookcheck

CHAPTER 2. METHODOLOGY 45

pressions.

• Genetic algorithm: Random attempts at developing the sets of characters

that make up a standard Iu Mien syllable in Old Roman script.

• Positional analysis: Analysis of the data to determine which symbols only

exist in the initial, medial or trailing positions of a syllable.

• Hybrid approach: Using the genetic algorithm constrained by positional

rules.

2.4 Machine learning of transcription rules

In these studies, a Ruby implementation of the ID3[43] was used to generate decision

trees. Each syllable of the unique word list was broken into a vector list of phonemes

which were used as pre-classified examples. ID3 was then applied to generate a top-

down induction of the corresponding decision trees.

Neural networks in this study were generated using a Ruby implementation of a

multilayer perceptron with back-propagation learning.[43] Each syllable of the unique

word list was broken into a vector list of phonemes. The unique elements for each

phoneme were catalogued and enumerated over the full range of possibilities. The

rank order of each element was then used to determine the corresponding outcome

or input bit that should be set for the transcription engine, based respectively on

whether the phoneme was part of the target or source syllable.

The bit field values for each phoneme were also combined together to create a

list of input values. The bit fields of the target phonemes were used to represent

the expected outcomes. These bit patterns were then used as respective outputs and

inputs to the multi-layered perceptons which were train the neural networks. To

CHAPTER 2. METHODOLOGY 46

illustrate this, Figure 2.3 shows how 3 bits of input might be processed in by a neural

network of 2 hidden layers connected by links of varying weights to determine which

of 2 bits is to be selected.

Figure 2.3: An example of a neural work

Although many linguistic rules are best modelled by a step function, the sigmoid

function given in Eq. 2.1 was used in the hopes with the expectation that it was

better suited towards the discovery of rules from datasets with known exceptions and

typos. As shown in Figure 2.4, a step function is unforgiving at a threshold while a

sigmoid function exhibits some smoothing of the transition making it better suited

for the back propagation of errors when typos are present.

f(x) =
1

1 + e−x
(2.1)

With both machine learning techniques, the Ruby function shown in Code Frag. 2.5

was used to assign individual syllables randomly between the training set and test

sets according to a given portion of all possible syllables. The portion of the size of

CHAPTER 2. METHODOLOGY 47

#! /usr/ruby
Book check program - check the directory structure of the Iu
Mien Bible text archives
(c) Copyright 2011 by Robert Batzinger. All rights reserved.
require "bookcheck.rb"

puts "Checking the source directories"
src = Bookcheck.new('~/mientext',

['GEN', 'MNR', 'ORM', 'TAI', 'LAO'])
src.finddirs
if src.errs == []

require 'yaml'

fout = open('bookdirs.yml','w')
fout.puts src.dirlist.to_yaml
fout.close
puts "Processing completed"

else
puts "Errors found:"
puts src.errs.join("\n")

end

Code Frag. 2.4: Running Class Bookcheck from within a program

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Figure 2.4: Sigmoid vs step function

CHAPTER 2. METHODOLOGY 48

the training set to that of the test set was varied to gain insight as to how much of

the language would have to be sampled in order to develop practical and dependable

rules. All studies were conducted in triplicate in an attempt to block sampling errors.

def choose_set(portion=0.5)
rand < fraction ? :trainingset : :testset

end

Code Frag. 2.5: Method for assigning samples between the training and test set

Machine learning of the transcription rules was attempted through the use of

two AI4R modules: ID3 (for decision teaching) and neural networks with backprop-

agation. The number of hidden layers needed in neural networks was empirically

determined in an experiment that tested the outcome with the number of hidden

layers ranging between 0 and 3. The AI4R package also gives Ruby programmers the

ability to save the learned logic of ID3 and the generated weighted links of the neural

networks in a format that could be loaded and used in application software.

2.5 Implementing transcription as a web service

The final stage of this project was to embed the transcription rules in a web appli-

cation. The goal was to provide an opportunity for the Iu Mien community to have

access to this technology. As all previous development had been done using Ruby

as the programming language, it seemed natural to use Ruby on Rails as the devel-

opment framework environment for developing the web application. Because Rails

development framework implements solutions that are designed to manage the core

data objects and related processes, the key data objects and processes of the web

CHAPTER 2. METHODOLOGY 49

application were identified and documented within the Rails model.

The analysis began with the description and specification of the required behavior.

This was recorded in plain English as per the standards of Cucumber. The specifi-

cations of the revised website have been included in Appendix C. Collection formal

descriptions of the intended behaviors helped to elucidate the basic requirements of

the web application. Analysis of these specifications suggested that the web appli-

cation must manage the data needed to support the following two systems of data

objects:

• User accounts: Authentication facilitates authorization of the range of ser-

vices appropriate for each particular user via role-based permissions. Similarly,

establishing formal roles makes it easier to establish views of the system in

which users are only provided links and access only to services to which they

have permission. The entity relation diagram (ERD) of the user accounts is

given in Figure 2.5.

Figure 2.5: Entity relationship diagram of the user account management

• Transcription jobs: The ERD is given in Figure 2.6.

The submitted text and its script identifier are accepted as input parameters to

the job. The processor then converts the text to the other scripts, upgrading the

CHAPTER 2. METHODOLOGY 50

Figure 2.6: Entity relationship diagram of the transcription job management

the temporary page via AJAX for every thousand characters of text converted.

Upon completion, the output page changes to display the converted text in each

script.

In this project, data migration tables were used to specify the attributes of data

objects. Attributes were assigned standard Rails data types which were automatically

converted at the time of application deployment to SQL tables with corresponding

fields of appropriate data types. A sample of the data migration file for the user is

given in Code Frag.2.6. The up and down methods are executed during deployment

and revision of database schemas.

The flexibility of this system was demonstrated when Heroku made its decision

to switch its database support from mySQL to postgreSQL. In traditional web appli-

cation development environments, this change would result in the rewriting database

connection methods and operators. However, the migration could be accomplished

by dumping the data to a yaml object file, changing the database configuration file

CHAPTER 2. METHODOLOGY 51

class CreateUsers < ActiveRecord::Migration
def self.up

create_table :users do |t|
t.string :name
t.string :email
t.string :password
t.integer :login_count
t.integer :role_id
t.timestamp :last_login

end
end

def self.down
drop_table :users

end
end

Code Frag. 2.6: User data object

and then uploading the data. The changes made to the database file are shown in

Code Frag. 2.7. It should be noted that the web application was developed and

tested locally using a SQLite database. The Rails system was installed to automati-

cally update the production database from the development database and upload the

production system to the Heroku server cloud.

Analysis of the Cucumber specs also revealed the range of processes that would

be required by the application. The links between them are shown in Figure 2.7. The

corresponding web site was implemented in Rails and tested locally before uploading

to the Heroku cloud providing public access to this service. The online service main-

tains a log file to record the frequency and type of use. Feedback is forwarded to a

project email address.

CHAPTER 2. METHODOLOGY 52

using mySQL using PostgreSQL

development:
adapter: sqlite3
database: db/devel.sqlite3
pool: 5
timeout: 5000

test:
adapter: sqlite3
database: db/test.sqlite3
pool: 5
timeout: 5000

production:
adapter: mysql
host: localhost
username: miendev
password: 65a7f82d841...

−→

development:
adapter: sqlite3
database: db/devel.sqlite3
pool: 5
timeout: 5000

test:
adapter: sqlite3
database: db/test.sqlite3
pool: 5
timeout: 5000

production:
encoding: unicode
adapter: postgresql
port: 5432
host: localhost
username: miendev
database: mien
password: 65a7f82d841...

Code Frag. 2.7: User data object

CHAPTER 2. METHODOLOGY 53

Fi
gu

re
2.

7:
W

eb
pa

ge
na

vi
ga

tio
n

m
ap

of
th

e
on

lin
e

tr
an

sc
rip

tio
n

se
rv

ic
e

CHAPTER 3

Results

3.1 Fidelity of character handling

The source textfiles for this project were initially keyboarded and processed with

software that ran on MSDOS 3.1. However, the software originally used to edit

the files in Thai and Lao no longer works in modern version of Microsoft Windows

because several of the DOS BIOS calls and the direct addressing of graphic memory

have changed. However, it was quickly discovered that modern versions of Windows

word processing software were changing the contents of the Thai and Lao text files.

Comparison of common codepages1 provides the first hints of the source of this

apparent lack of fidelity in handling legacy 8-bit character encodings. As shown in

Table 3.1, approximately 25% of the 8-bit code space of a typical standard codepage

are ignored as unknown letters. Ever since Windows 2000, the default behavior of the

Microsoft Windows operating systems and much of the software programs that run

on them is to replace characters of unknown codepoints with that of a box symbol.

While this was meant to alert the user to character encoding problems, it does result

in a loss of data. In Mac OsX, the default behavior has been to display the box mark

but leave the code point untouched. The situation was made even more dire by the

fact that different codepages have different regions of unknown character making it
1Codepages are tables of the underlying code numbers (or codepoints) that correspond to each

character. For most languages of the world, codepages are registered as ISO standards and cover
codepoints in a range of values between 32 and 255. Although most operating systems attempt to
support Unicode, keyboard mappings and font glyphs are still linked codepages.

54

CHAPTER 3. RESULTS 55

possible to lose data as default fonts and/or system codepages are changed.

Additionally, attempts to copying text into Windows text files are started with

the detection of the file format. Those formats foreign to Windows and would auto-

matically transform the contents into a Windows standards codepage. Experiments

using the text files with encoded in different 8-bit codepages showed that this process

worked well if the computer correctly detected the codepage in use and has full sup-

port for the corresponding codepage. However, most computer workstations on the

Indiana University - South Bend campus are devoid of codepages of Asian languages.

In addition, plain text files are merely a capture of the sequence of codepoints corre-

sponding to the character sequence in the document with any codepage signature or

identifier. Under these conditions, the Windows copy attempted to guess but would

often use the default Roman codepage.2 In addition, the system attempted to convert

the characters to Unicode equivalents of the codepage. Therefore, files could not be

given file names ending in .txt extensions and could only be copied in binary mode.

In practice, the risk of losing Thai and Lao legacy-encoded characters on Windows 7

was high enough that the results of the initial months of processing was corrupt and

had to be discarded. The decision was made to port the legacy text files to Mac OsX

where file operations were more reliable.

However, a second problem arose when the text processing was attempted using

Perl version 5.10. Although binary mode file operations were used, it was found

that the Perl language assumed either standard codepage or Unicode encoding in the

string operations and regular expressions. At this point, the project embraced the

Ruby language which provided better control of encoding by allowing specification

of the codepage for file, memory and string operations. In Ruby, there was even

built-in support for forcing strings loaded in one codepage to be either interpreted
2In Microsoft Office products, the user is prompted for the underlying codepage.

CHAPTER 3. RESULTS 56

Table 3.1: 8-bit Codepoints used in various codepage encodings
Filled circles represent standard codepoints the code page.

x0 x1 x2 x3 x4 x5 x6 x7
x x8 x9 xA xB xC xD xE xF

0 ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦
◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦

1 ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦
◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦

2 ••••• ••••• ••••• ••••• ••••• ••••• ••••• •••••
••••• ••••• ••••• ••••• ••••• ••••• ••••• •••••

3 ••••• ••••• ••••• ••••• ••••• ••••• ••••• •••••
••••• ••••• ••••• ••••• ••••• ••••• ••••• •••••

4 ••••• ••••• ••••• ••••• ••••• ••••• ••••• •••••
••••• ••••• ••••• ••••• ••••• ••••• ••••• •••••

5 ••••• ••••• ••••• ••••• ••••• ••••• ••••• •••••
••••• ••••• ••••• ••••• ••••• ••••• ••••• •••••

6 ••••• ••••• ••••• ••••• ••••• ••••• ••••• •••••
••••• ••••• ••••• ••••• ••••• ••••• ••••• •••••

7 ••••• ••••• ••••• ••••• ••••• ••••• ••••• •••••
••••• ••••• ••••• ••••• ••••• ••••• ••••• ◦•◦◦◦

8 ◦◦◦◦◦ ◦◦◦◦◦ ◦•◦◦◦ ◦•◦◦◦ ◦•◦◦◦ ◦•◦◦◦ ◦•◦◦◦ ◦•◦◦◦
◦•◦◦◦ ◦•◦◦◦ ◦•◦◦◦ ◦•◦◦◦ ◦•◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦ ◦◦◦◦◦

9 ◦◦◦◦◦ ◦•◦•◦ ◦•◦•◦ ◦•◦•◦ ◦•◦•◦ ◦•◦•◦ ◦•◦•◦ ◦•◦•◦
◦•◦•◦ ◦•◦•◦ ◦•◦•◦ ◦•◦•◦ ◦•◦•◦ ◦◦◦•◦ ◦◦◦◦◦ ◦◦◦◦◦

A ◦◦••• ••••• ••••• ••••• ••••• ••••• ••••• •••••
••••• ••••• ••••• ••••• ••••• ••••• ••••• •••••

B ••••• ••••• ••••• ••••• ••••• ••••• ••••• •••◦•
••••• ••••• ••••• ••••• ••••• ••••• ••••• •••••

C ••••• ••••• ••••• ••••• ••••• ••••• ••••• •••••
••••• ••••• ••••• ••••• ••••• ••••• ••••• •••••

D ••••• ••••• ••••• ••••• ••••• ••••• ••••• •••••
••••• ••••• ••••• ••••• ••••• ••••• ••••• •••◦•

E ••••• ••••• ••••• ••••• ••••• ••••• ••••• •••••
••••• ••••• ••••• ••••◦ ••••• ••••◦ •••◦◦ •••◦•

F ••••• ••••• ••••• ••••• ••••• ••••• ••••• •••••
••••• ••••• ••••• ••••• ••••◦ ••••◦ ••••◦ •••◦◦

Codepages: Latin1: •◦ UTF-8: •◦ ISO-8859-1: •◦ Lao: •◦ TIS-620: •◦

CHAPTER 3. RESULTS 57

and/or converted into another codepage. The support for Unicode characters in Ruby

was so good that even identifiers of objects, methods and attributes in programs

could also be specified as Unicode text strings. To illustrate this, a Thai version

of a recursive implementation of Euclid’s algorithm to find the greatest common

denominator (GCD) is shown in Code Frag. 3.1

encoding: utf-8

หรม: ตัวหารร่วมมาก
(อังกฤษ: Greatest Common Divisor: gcd)
ของจำนวนเต็มสองจำนวนซึ่งไม่เป็นศูนย์พร้อมกัน
คือจำนวนเต็มที่มากที่สุดที่หารทั้งสองจำนวนลงตัว
โดยขั้นตอนวิธียุคลิด (Euclid’s algorithm)
(จาก http://th.wikipedia.org/wiki/ตัวหารร่วมมาก)
ตัวอย่างเช่น
45/60 = 15 x (3/4) = 3/4
ตัวเศษ (หรือ ต.ศ.) = 45
ตัวส่วน (หรือ ต.ส.) = 60
ตัวหารร่วมมาก (หรือ ห.ร.ม.) = 15

def หรม(ตศ, ตส)
(ตส == 0)? ตศ : หรม(ตส, ตศ mod ตส)

end

Code Frag. 3.1: A recursive implementation of Euclid’s GCD algorithm in Thai

With the wide range of character encodings supported by Ruby, it was possible

to write code fragments that modeled the character confusion that had occurred in

Windows and to write filters to unscramble unwanted character remapping. The

Ruby code fragments shown in Code Frag. 3.2 were used to compare the difference

between byte-wise and character-wise decomposition of a string in Thai script.

Code Frag. 3.2 was used in an experiment in which the default code page of

the Ruby interpreter was set to one of three common codepages, i.e., ISO-8859-1 (a

CHAPTER 3. RESULTS 58

text = ”เย^ซู”

puts 'Method 1: Byte-wise iteration through a string: '
text.each_byte {|c| print "#{c.ord.to_s(16)} " }

puts 'Method 2: Character-wise iteration across a string: '
text.chars.each {|c| print "#{c.ord.to_s(16)} " }

puts 'Method 3: Indexed character iteration across a string: '
0.upto(text.length - 1) {|inx| print "#{text[inx].ord.to_s(16)} "}

Code Frag. 3.2: Hexadecimal dump of characters found by different string iterations

common accented Roman codepage of Windows 7, also known as Roman I), TIS-620

(a standard Thai codepage) and ASCII-8bit (an extended ASCII codepage). The

tests were conducted in Windows 7 on a system with the locale set to Thai. In two

test runs, the string was declared in one encoding and then converted to another

encoding. The results are shown in Table 3.2.

The effect of the default system codepage can be seen in the ASCII-8bit results

where the default system codepage was used to initially set the string. As the code-

points in this string exist in all three codepages tested, the byte-wise interpretation

of the string was unaltered by switching codepages. However, UTF-8 remapped the

codepoints to the corresponding Unicode character values according to the default

system codepage. However, if the string was forced to assume the character mapping

of ISO-8859-1, subsequent conversion to UTF-8 resulted in the remapping of Thai

characters to accented Roman characters even if UPC Thai fonts were used as the

default font. Fortunately, the system default codepage setting had no effect of text

encoded in UTF-8.

Based on these studies, it was decided that conversion of the source text to UTF-8

CHAPTER 3. RESULTS 59

Table 3.2: Effects of character encoding settings on the output
(See Code Frag. 3.2)

Colors indicate correct 8-bit Thai or Unicode encoding.

String
encoding Method 1 Method 2 Method 3

ASCII-8bit e0 c2 5e ab d93 e0 c2 5e ab d93 e0 c2 5e ab d93

TIS-620 e0 c2 5e ab d93 e0 c2 5e ab d93 e0 c2 5e ab d93

ISO-8859-1 e0 c2 5e ab d93 e0 c2 5e ab d93 e0 c2 5e ab d93

UTF-8 e0 b9 80 e0 b8
a2 5e e0 b8 8b
e0 b8 b92

e40 e22 5e
e0b e392

e40 e22 5e
e0b e392

ISO-8859-1
→ UTF-8 1

c3 a0 c3 82 5e
c2 ab c3 994

e0 c2 5e ab d93 e0 c2 5e ab d93

TIS-620 →
UTF-8 1

e0 b9 80 e0 b8
a2 5e e0 b8 8b
e0 b8 b92

e40 e22 5e
e0b e392

e40 e22 5e
e0b e392

1 The string was specified in one encoding and then converted to another encoding.
2 The string can be viewed as Thai using a Thai font encoded in Unicode,
3 The string can be viewed as Thai only with a UPC Thai font encoded in TIS-620.
4 The string has been converted to accented Roman script characters.

was well worth the effort in terms of reliability. In addition, UTF-8 text could be

displayed in programs like Emacs and Eclipse making it easier to create regular ex-

pressions that could be edited in character form instead of hexadecimal representation

that had been used previously. For the most part, converting the source text files to

UTF-8 required a byte-wise conversion from the legacy coding to the corresponding

UTF-8 codes as shown in Appendix A.

However, in some cases, the Thai script archived files had been changed to Roman

I encoding by the Windows software used in the publishing process. In these cases,

the Roman I UTF-8 encoded characters had to be remapped back the ISO-8859-1

codepage. At this point, the encoding attribute was changed to TIS-620 in order to

CHAPTER 3. RESULTS 60

force the text to be interpreted by the Ruby as text that can be remapped to Thai

Unicode.

Similar processing was required of the Lao encoded text that was displaying as

Roman I characters. However, at the time of this text processing, the Lao character

set had not been fully accepted into the Unicode standard. As such, not all Unicode

aware software would support characters in the Lao range.[44] To get around this, a

Unicode to custom UTF-8 converter method shown in Code Frag. 3.3 was developed

to support the proposed Lao codepoints that had been submitted to the Unicode

Consortium. The Lao proposal was incorporated into the Unicode 5.0 standard[45]

and full support for the Lao Unicode codepoints became available in Ruby in 2008.

However, the corresponding ISO standard Lao codepage is still lacking as of this

writing.

Code Frag. 3.3 calculates the multi-byte rendering of a codepoint by iterative

bit shifting to strip off the least significant 6 bits at a time. The leading byte is

used to identify the range of the Unicode character, the most significant digits and

the number subsequent of data bytes. This routine makes it possible to work with

proposed Unicode codepoints as well as user defined characters in the surrogate user

planes in the Unicode codespace that ranges between 0x00 and 0x10FFFF and encodes

for over 1 million characters.

3.2 Merging source text into a text corpus

The Iu Mien Bible translation source texts were obtained from the OMF translation

team headed by Ann Burgess. The process of extracting the Iu Mien text from the

source files in order to create a text corpus was described in Section 2.2 Sample text

is shown in Appendix B. The markers used in these source files were a means to

CHAPTER 3. RESULTS 61

to_utf8 : Converts the vector of integers representing
unicode code values byte-wise into a UTF-8 string via
bit shift of the Unicode value creating Big-Endian UTF-8.

input parameter: a list of Unicode code values
returned value: UTF-8 string

def to_utf8(uvector)
output = ''
@uvector.each {|c|

case c

Append 7Bit ASCII characters to string
when 0..127
output = output + c.chr

Assemble and append multiple byte character code
else
chr = ''
mask = 0b00011111
offset = 0b10000000

Little Endian processing
while c >= mask

x = (c & 0b111111) + 0b10000000
Packed as a Big Endian string of bytes
chr = x.chr + chr
c = c >> 6
offset = (offset >> 1) + 0b10000000
mask = mask >> 1

end

x = offset + c
output = output + x.chr + chr

end
}
output

end

Code Frag. 3.3: Converting a list of Unicode values into a UTF-8 string

CHAPTER 3. RESULTS 62

identify the textual elements in the Bible translation and conformed to a regional

standard format for Bible manuscripts.[46]

A number of textual units in the source files were ignored for the purposes of this

study because they commonly contained either non-phonetic sequences of abbrevia-

tions (as are common to footnotes, cross-references) or non-Iu Mien text (as found in

file meta-data which referred to the processing status of the text in the file). A listing

of the markers which were omitted in this study and the corresponding text patterns

are shown in Table 3.3.

Table 3.3: Features of the source files which were excluded from this study

Feature description Marking
Identification line \id ...
Running page headers \h ...
Footnotes \f . * ... *
Cross-references \x . * ... *
Table contents \tb ... \te

While the number of Bible books processed shown in Table 3.4 matches the canon-

ical Biblical count of 66 books, the number of chapters and verses found in the source

text files did not match the chapter and verse counts of a standard Protestant Bible.

Many of these discrepancies stem from the conventions used for the purpose of this

study. First of all, the text of Bible book introductions was labeled and referenced as

an additional chapter, referenced as Chapter 0 (Hence the extra 66 chapters over the

canonical count of 1,189). Although the Iu Mien Bible text references the full set of

31,102 verses found in a standard protestant Bible, numerous sections of the Iu Mien

translation of the Bible were translated as a cluster of verses which were counted as

a single verse text unit instead of the corresponding range of verses. In addition, the

text of introductions were also considered as a single verse unit.

CHAPTER 3. RESULTS 63

Table 3.4: Processing statistics in the development of the Iu Mien Corpus
Process class Total number Discrepancies Hrs required
name found found to complete
chkbookdir 66 0 5
chkchpfiles 1,189 3 4
brkchps 1,255 25 5
brkverses 30,987 15 8
brkparagraphs 39,626 207 32
brkphrases 117,495 1,580 80
brkwords 1,023,320 76,793 169
uniqwords 11,224 3 2
brksyllables 34,770 117 2
uniqsyllables 3,320 987 10
brkphonemes 420,123 - 12
uniqphonemes 166 - 10

The processing of the source text took place part-time and was completed over

several years of works. The source text was broken down into smaller units of text

which were stored, tested and managed as units of parallel text. One of the unique

properties of these parallel text units is that the sequence order of words and punc-

tuation was consistent for all scripts. This provided addition referencing of text from

the standard Bible book, chapter and verse to an extended system used for this

project: Bible book, chapter, verse, paragraph, phrase, word and syllable. Sentence

and phrase boundary punctuation were used as delimiters as an attempt to minimize

alignment problem. The referencing system provided the precise referencing needed

to identify and re-align misplaced text units when missing or extra punctuation were

discovered. The statistics of the phrases found are given in Table 3.5

The times given in Table 3.4 represent the total amount of time spent developing

and testing class definitions, processing text and handling exceptions. The alignment

of paragraphs, phrases and words represented the greatest challenge to the process.

CHAPTER 3. RESULTS 64

Table 3.5: Phrase break units found
Punctuation Count

. 45,979
, 12,222
? 3,323
! 2,917

Total 64,441

The number of exceptions discovered on the first pass of each step are also given in

the table.

Although the Iu Mien share a common language, local conventions in spacing

were discovered. One source of difference is in the use of a hyphenation character

to join adjectives to the noun they modify. This is clearly shown in Table 3.6 where

the adjective (new) has been linked to the name of the city (Jerusalem) for the New

Roman, Thai and Lao fonts but broken into separate whitespace delimited units in the

Old Roman script. This kind of alignment error posed a major problem to subsequent

processing because the word count would be off: Old Roman returns 3 words while

the other 3 published scripts would return a word count of 2. These words were

realigned by the whitespace to an underscore in all cases where the whitespace had

been replaced by a hyphenation characters in any of the other scripts.

Table 3.6: A word alignment error of New Jerusalem City from Rev 21:2:1:3:2-3

Script text rendering
Generic syav= [ye-lu-saa-lem zivb]
Old Roman syavb ye-lu-saa-lem zivb
New Roman siang-Yeˆluˆsaaˆlem Zingh
Thai เซียง-เยˆลู̂ ซาˆเลม ฒี่ง
Lao ຊຢັaງ-ເຢˆລູˆຊາˆເລມ ຕສງ

CHAPTER 3. RESULTS 65

0
10

20
30

40

12345

H
an

d
lin

g
 o

f
u

n
m

at
ch

ed
 w

o
rd

 e
rr

o
rs

da
ys

 o
f e

ffo
rt

log number of unmatched words found

Figure 3.1: Effort required to align of words units in corpus

CHAPTER 3. RESULTS 66

Because the alignment of the text into parallel text units was essential for building

a corpus that could be used for supervised learning, considerable effort was spent on

developing procedural and programmed methods to align the text and to verify the

alignment. Figure 3.1 traces the efforts required to align words during the develop-

ment of the word list. While the first attempts were able to quickly handle thousands

of issues, there was an exponential growth in the effort to find and remove the last

remaining detectable errors which often requiring new paradigms to effectively and

efficiently handle low frequency issues with complex or multiple alignment shifts. In

fact, this effort to create a word list without detectable word alignment errors proved

to be generally log-linear.

Once a word list had been achieved the development of a syllable list was relatively

easier. However, numerous ambiguities appeared in the syllable list. Table 3.7 shows

one case where there were 4 entries for the New Roman and Old Roman syllable

yu. In the majority of these entries, the long vowels are used. However, the Thai

and Lao short vowels were also used occasionally. This raised concerns whether these

unusual syllable patterns might actually be typographic errors especially because they

appeared as single occurrences in a list of 1 million words and that the long ู and

short ุ vowels are located on the same key of the keyboard.

The 17 words which contained the syllable yu are given in Table 3.9. First, it was

noted that this syllable only occurred in proper names. The Lao ຢຸˆດາ was clearly a

misspelled reference to Judah son of Jacob. The other occurrences represented the

name Justus which occurs 3 times in the New Testament. The use of a short vowel

in this proper name would be consistent with the short vowels of presyllables in Iu

Mien words that have them. If this is true, then it would appear that the use of the

long vowel in the Lao version of Titus Justus is a typo that is inconsistent with the

CHAPTER 3. RESULTS 67

Table 3.7: Ambiguity in the rendering the syllable yu

Long vowels are printed in black and short vowels in red

Rendering by specified script
Gen Orm Nrm Tai Lao Frequency
yu yu yu ยุ ຢຸ 1
yu yu yu ยุ ຢູ 1
yu yu yu ยู ຢຸ 1
yu yu yu ยู ຢູ 14

other occurrences of this name.3

It is also known that in the late stages of the editing of this translation, separate

focus groups proofread the draft editions of each script and submitted their recom-

mendations to the translators and editors. This input resulted in numerous changes

in the spelling of proper names which often reflected the spelling of the majority

community more than common Iu Mien pronunciation. The words in the corpus were

checked for consistency by checking for multiple entries for any word of any script.

The differences that were merely vowel length changes were grouped separately from

other types of changes. The cross tabulation is shown in Table 3.8

Table 3.8: Word inconsistencies
Consistent Vowel length Other Total
rendering changes changes words

Mien words 3,418 17 47 3482
Proper names 7,154 269 315 7,738

Total 10,572 286 362 11,220

3Confirmation of this observation by native speakers of language is still pending.

CHAPTER 3. RESULTS 68

Ta
bl

e
3.

9:
W

or
ds

th
at

co
nt

ai
n

th
e

yu
sy

lla
bl

e
Lo

ng
u

vo
we

ls
ar

e
pr

in
te

d
in

bl
ac

k
an

d
sh

or
tu

vo
we

ls
in

re
d

O
ld

N
ew

W
or
d

G
en

er
ic

R
om

an
R

om
an

T
ha

i
La

o
C
ou

nt

[y
u-
Ba

an
]

yu
-B

aa
n

Yu
ˆm

ba
an

ยู^
บา

น
ຢູˆ
ບາ
ນ

2
[y
u-
Bu

-la
tq
]

yu
-B

u-
la
tq

Yu
ˆm

bu
ˆl
at
v

ยู^
บู^

ลัด
ຢູˆ
ບູˆ
ລັaດ

1
[y
u-
D
aa

]
yu

-D
aa

Yu
ˆn

da
a

ยู^
ดา

ຢູˆ
ດາ

1,
10

0
[y
u-
D
aa

]
yu

-D
aa

Yu
ˆn

da
a

ยู^
ดา

ຢຸ̂
ດາ

1*
[y
u-
D
aa

tg
]

yu
-D

aa
tg

Yu
n̂d

aa
tc

ยู^
ดา

ด
ຢູˆ
ດາ
ດ

56
[y
u-
D
ia
]

yu
-D

ia
Yu

ˆn
di
e

ยู^
เด

ีย
ຢູˆ
ເດ
ຍ

49
[y
u-
o-
D
ia
]

yu
-o
-D

ia
Yu

ˆo
ˆn

di
e

ยู^
โอ

^เ
ดีย

ຢູˆ
ໂອ
ˆເດ

ຍ
1

[y
u-
D
itg

]
yu

-D
itg

Yu
ˆn

di
tc

ยู^
ดิด

ຢູˆ
ດິດ

1
[y
u-
T
i-k

at
g]

yu
-T

i-k
at
g

Yu
ˆt
iˆ
ga

tc
ยู^

ท^
กัด

ຢຸˆ
ທິˆ
ກັaດ

2
[y
u-
fe
-t
itg

]
yu

-fe
-t
itg

Yu
ˆf
eˆ
di
tc

ยู^
เฟ

^ต
ิด

ຢູˆ
ເຟ
ˆຕ
ິດ

59
[y
u-
lia

]
yu

-li
a

Yu
lie

ยู^
เล

ีย
ຢູˆ
ເລ
ຍ

1
[y
u-
lo
pg

]
yu

-lo
pg

Yu
lo
pc

ยู^
โห

ลบ
ຢູˆ

ົaບ
1

[y
u-
ly
et
q]

yu
-ly

et
q

Yu
lie
tv

ยู^
เล

ี้ยด
ຢູˆ
ລຽ
ດ

2
[y
u-
ni
-a
tg
]

yu
-n
i-a

tg
Yu

ˆn
iˆ
at
c

ยู^
น

ี^อ
ัด

ຢູˆ
ນີˆ
ອັaດ

1
[y
u-
ni
tq
]

yu
-n
itq

Yu
ni
tv

ยู^
น

ิด
ຢູˆ
ນິດ

1
[y
u-
sa
a-
Ta

tq
]

yu
-s
aa

-T
at
q

Yu
ˆs
aa

ˆt
at
v

ยุ^
สะ

^ท
ัด

ຢຸ̂
ສະ
ˆທ
ັaດ

2*
[y
u-
sa
pq

-h
e-
se
tg
]

yu
-s
ap

q-
he
-s
et
g

Yu
sa
pv

H
es
et
c

ยู^
ซ

ับ^
เฮ
^เ

สด
ຢູˆ
ຊັaບ

ˆເຮ
ˆເສ

ດ
1

[T
i-T

i-a
tg
-y
u-

T
i-T

i-a
tg
-y
u-

T
iˆ
tiˆ

at
c
Yu

ˆ
ทิ^

ทิ^
อัด

^ย
ุ^

ທີˆ
ທີˆ
ອັaດ

ˆຢ
ູˆ

sa
a-
Ta

tq
]

sa
a-
Ta

tq
sa
aˆ

ta
tv

สะ
^ท

ัด
ຊາ
ˆທ
ັaດ

1*

∗
In
di
ca
te
s
th
e
us
e
of

th
e
sh
or
t
yu

vo
we

l

CHAPTER 3. RESULTS 69

The results would suggest a highly statistically significant increase in discrep-

ancies among proper names over what was observed with common Iu Mien words.

While many of these discrepancies seem to be vowel length shifts especially of proper

names, it was also suspected that some of these discrepancies could be attributed to

typographic errors that occurred during manual correction of individual occurrences

of each altered proper name under the pressure of approaching deadlines.4

3.3 Characteristics of the Iu Mien text corpus

The resulting word list was separated into two lists: one containing all proper names

used in the Bible and the other containing Iu Mien words. To compare these two lists,

both lists were sorted by the normalized rank order and plotted against the normalized

accumulative sum of the frequency for each word unit. Normalization was achieved by

dividing rank by the total number of unique units and the accumulative sum by the

total number of units found in the Bible. The resulting graph is shown in Figure 3.2.

Figure 3.2 clearly showed that the frequency distribution of proper names was dif-

ferent from that of the rest of the Iu Mien text. In fact, the corresponding histograms

of the curves are statistically significant (with p < 0.001). As shown in Table 3.10,

the most frequent proper name is the word for Lord, which alone represented nearly

12% of all proper names in this Bible translation. The 5 most frequent words together

represented over 23% of all proper names. At the other end of the spectrum, there

were 4,825 proper names (or 62% of all proper names) that only occurred only once

in the entire Bible .

By contrast, Table 3.11 shows that the most frequent Iu Mien words represented

less than 8% of all words and the 5 most frequent words together accounted for about
4Confirmation of the spellings by native speakers of language is still pending.

CHAPTER 3. RESULTS 70

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Normalized accumulative sum of words found

Normalized Ranking

F
ra

ct
io

n
of

 a
ll

un
its

Proper names
Common words

Figure 3.2: Comparison of normalized accumulative sum of unit frequencies

Table 3.10: The five most frequent proper names in the Iu Mien Bible

Old New Total Accum
Roman Roman count fraction
Tinb huvb Tin-Hungh 6,375 0.116
ye-su Yesu 2,083 0.154
i-saa-laa-en myenb Iˆsaaˆlaaˆen Mienh 1,621 0.183
Daa-witq Ndaawitv 1,177 0.204
i-saa-laa-en Iˆsaaˆlaaˆen 1,019 0.223

CHAPTER 3. RESULTS 71

22% of all words. Only 827 words occurred only once in the Bible, representing

approximately 24% of the words used.

Table 3.11: The five most frequent Iu Mien words in the Bible

Old New Total Accum
Roman Roman count fraction
Eei nyei 63,832 0.077
ninb ninh 29,833 0.113
Bua mbov 26,363 0.145
yia yie 20,629 0.170
meib meih 20,300 0.194
myenb mienh 17,463 0.216

While the proper name distribution was heavily weighted for the extreme ends,

i.e. the most and least frequent, the Iu Mien word distribution is a steady progres-

sion throughout the whole range. In fact, plotting log of the frequency of the Iu

Mien distribution against the log of the rank resulted in a log linear graph that is

consistent with Zapf’s rule (which has been applied to many literary works in many

languages).[47] However, analysis of the proper names in this way does not yield a

linear relationship.

Table 3.12 provides some basic metrics on the text corpus retrieved from the Iu

Mien Bible. It was interesting to note how 25 MBytes of files yielded only 3,320

unique parallel units of syllables. In addition, nearly 350 syllables found among the

proper names were not seen in the rest of the Iu Mien text.

However, a number of statistics were calculated to better understand the differ-

ences between the Iu Mien words and the collection of Bible proper names transcribed

into Iu Mien. However, some of the simplest equations also turned out to be the most

revealing.

CHAPTER 3. RESULTS 72

−4 −3 −2 −1 0

−
6

−
5

−
4

−
3

−
2

−
1

0
Zapf relationship within the Iu Mien Bible

log rank

lo
g

fr
ac

tio
n

of
 a

ll
w

or
ds

Proper names
Common words

Figure 3.3: Normalized Zapf analysis of word frequencies in the Iu Mien corpus

Table 3.12: Raw metrics of the Iu Mien text corpus

Proper Common All
Description Symbol names words text

Total byte count of the source files Nchr - - 25,612,609
Verses found Nvs - - 30,987
Sentences found Nsen - - 52,219
Phrases found Nphr - - 64,441
Word units found Nwrd 87,747 817,918 905,665
Unique words units found nwrd 7,738 3,719 9,823
Syllables found in the unique word set Swrd 21,971 4,123 25,282
Unique syllables in the unique word set swrd 871 3,001 3,320

CHAPTER 3. RESULTS 73

Word-wise statistics

Words per phrase = Nwrd

Nphr
(3.1)

Repetition of words = Nwrd

nwrd
(3.2)

Syllable-wise statistics

Syllables per unit = nwrd

Swrd
(3.3)

Repetition of syllables = Swrd

swrd
(3.4)

Table 3.13: Basic statistics on the corpus retrieved from the Iu Mien Bible manuscript

Proper Common All PN
Statistic Formula names words words fract.1

Words per phrase Eq. 3.1 1.36 12.69 14.05 0.097
Average word repetition Eq. 3.2 11.34 219.93 92.20 0.388
Syllables per unit Eq. 3.3 2.84 1.11 2.57 0.847
Average syllable repetition Eq. 3.4 25.23 1.37 7.61 0.262

1 Fraction of the outcome influenced by proper names

The statistics generated by these formulae are shown in Table 3.13. The differences

between proper names and standard Iu Mien text can be clearly seen by these results.

Proper names represent a minority of the text and have more syllables per unit than Iu

Mien words some of which are associated with a presyllable. Through extrapolation

it is possible to determine the amount of influence the proper names have on the

statistics of the entire word list and corresponding syllable list.

A comparison of the distribution frequencies of syllables extracted from unique

word lists is shown in Figure 3.4. These distributions were very different than those

seen with the words in Figure 3.2. In addition, the distribution frequencies of syllables

from proper names differed from those from common words. Syllables that occur only

CHAPTER 3. RESULTS 74

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Normalized accumulative sum of syllables found

Normalized Ranking

F
ra

ct
io

n
of

 a
ll

sy
lla

bl
es

 fo
un

d

Proper names
Common words

Figure 3.4: Comparison of normalized accumulative sum of syllable frequencies

once account for 65% of the syllables from proper names and 26% of the syllables

from common words.

After discussion with various Iu Mien publishers, it was generally felt that it would

be good to leave the proper names in the sample set used for supervised learning

despite their differences from standard Iu Mien. The rationale was that Biblical

proper names were an integral part of the kind of text documents that they would

likely use with an automated transcription service. They would prefer a system that

would be able to handle both text and Biblical proper names. Therefore, the project

proceeded with the combined syllable lists.

CHAPTER 3. RESULTS 75

3.4 Parsing the syllables

As described in Section 2.3, parsing of syllables was achieved using regular expressions

developed, tested and run Ruby. The resulting segments were stored in a list of

parallel tokens that could be randomly distributed between test and training sets.

The list of tokens was analyzed to develop a complete catalogue of tokens used in

each phoneme of the syllables. This catalogue of tokens was developed for each script.

The results are given in Figures 3.5 to 3.9.

The complete catalogue of tokens was used as key to a map that replaced the

characters tokens with a vector composed of a string of binary values (one bit string

that is used as input to the neural network that determines the corresponding token

in the outcome vector of the target script. A summary of the syllable input vectors

and output token selection for each script is given in Table 3.14

Table 3.14: Size of input and outcome vectors for each script
Numbers represent the bit size of each vector

Source Individual target vectors
Script vector icon vow fcons ton
Gen 119 31 75 7 6
Orm 122 31 78 7 6
Nrm 123 38 71 8 6
Tai 179 129 37 7 6
Lao 220 160 47 7 6

The Lao input vector with 220 separate tokens was nearly twice the the size of

the Roman script vectors. As seen earlier, initial consonants and vowels represent the

tokens of greatest variability in terms of numbers. However, It should be noted that

while the number of syllable final tone markers are the same across all scripts, there

is a significant difference in the interpretation of tone marks in each script.

CHAPTER 3. RESULTS 76

icons vowel fcons tone

""| "B"|
"D"| "G"|
"K"|"P"|
"Q"| "R"|
"Z"|"f"|
"h"| "k"|
"l"| "m"|
"p"| "s"|
"t"| "z"|
"E"| "F"|
"H"| "J"|
"L"| "M"|
"N"| "T"|
"V"| "W"|
"Y"| "n"|

"v"

""| "a'"| "i"| "u'"| "a"|
"a'ai"| "a'ei"| "a'i"| "a'o"|
"a'waa"| "a'ye"| "aa"| "aa'"|
"aai"| "aau"| "ai"| "au"| "c"|
"c'"| "e"| "e'"| "ei"| "eu"|
"i'"| "ia"| "ia'"| "iu"| "o"|
"o'"| "oi"| "r"| "ru"| "u"|

"ua"| "ua'"| "wa"| "wa'"|"waa"|
"waai"| "waau"| "wai"| "wc"|

"wc'"| "we"| "wei"|"wei'"| "wi"|
"wo"| "wr"| "wu"| "x"| "x'"|

"xi"| "ya"| "yaa"|"yaau"| "yai"|
"yau"| "yc"| "ye"| "yei"| "yi"|

"yia"| "yia'"| "yiu"| "yo"|
"yru"| "yu"| "yu'"| "yua'"|

"ywa"| "ywi"| "ywr"| "yx"| "yx'"

""|
"k"|
"m"|
"n"|
"p"|
"t"|
"v"

""|
"b"|
"d"|
"g"|
"j"|
"q"

Figure 3.5: Tokens in a Generic script syllable input vector

icons vowel fcons tone

""| "B"|
"D"| "G"|
"K"| "P"|
"Q"| "R"|
"Z"| "f"|
"h"| "k"|
"l"| "m"|
"p"| "s"|
"t"| "z"|
"E"| "F"|
"H"| "J"|
"L"| "M"|
"N"| "T"|
"V"| "W"|
"Y"| "n"|

"v"

""| "'"| "a"| "a'"| "aa"|
"c"| "e"| "i"| "o"| "u"|
"u'"| "ua"| "wa"| "waa"|
"wc"| "we"| "wi"| "wo"|
"wr"| "x"| "xye"| "ya"|
"yaa"| "ye"| "yi"| "yo"|
"yu"| "ywa"| "ywr"| "yx"|
"a'ai"| "a'ei"| "a'i"|
"a'o"| "a'waa"| "a'ye"|

"aa'"| "aai"| "aau"| "ai"|
"au"| "aye"| "c'"| "e'"|
"ei"| "eu"| "i'"| "ia"|
"ia'"| "iu"| "o'"| "oi"|
"r"| "ru"| "ua'"| "wa'"|
"waai"| "waau"| "wai"|

"wc'"| "wei"| "wei'"| "wu"|
"x'"| "xi"| "yaau"| "yai"|
"yau"| "yc"| "yei"| "yia"|
"yia'"| "yiu"| "yru"| "yu'"|

"yua'"| "ywi"| "yx'"

""|
"k"|
"m"|
"n"|
"p"|
"t"|
"v"

""|
"b"|
"d"|
"g"|
"j"|
"q"

Figure 3.6: Tokens in an Old Roman script syllable input vector

CHAPTER 3. RESULTS 77

icons vowel fcons tone

""| "b"|
"c"| "d"|
"f"| "g"|
"h"| "k"|
"l"| "m"|
"mb"| "nd"|
"nq"| "nz"|
"p"| "q"|
"s"| "z"|
"hl"| "hm"|
"hn"| "hng"|
"j"| "mc"|
"mh"| "mv"|
"mx"| "n"|
"nc"| "ng"|
"nh"| "nj"|
"nv"| "nx"|
"t"| "v"|
"w"| "x"

""| "'"| "a"| "a'"| "aa"|
"aau"| "ae"| "ai"| "au"|

"e"| "ei"| "i"| "o"| "oei"|
"oi"| "or"| "u"| "u'"|

"ui"| "ya"| "yaa"| "yaau"|
"yae"| "ye"| "yi"| "yie"|
"yo"| "yor"| "you"| "yu"|

"yua"| "yuo"| "a'ai"|
"a'ei"| "a'i"| "a'o"|

"a'waa"| "a'yie"| "aai"|
"er"| "eu"| "i'"| "ia"|

"iaa"| "iaau"| "iae"| "iau"|
"ie"| "iei"| "io"| "ior"|
"iou"| "iu"| "iua"| "iui"|
"ou"| "ua"| "uaa"| "uaai"|
"uae"| "uai"| "ue"| "uei"|
"uo"| "yaai"| "yai"| "yau"|
"yei"| "yiu"| "yuei"| "yui"

""|
"k"|
"m"|
"n"|
"ng"|
"p"|
"q"|
"t"

""|
"c"|
"h"|
"v"|
"x"|
"z"

Figure 3.7: Tokens in a New Roman script syllable input vector

CHAPTER 3. RESULTS 78

ic
on

s
v
ow

el
f
co
n
s

to
n
e

””
| ”

ก”
| ”

ข
”|

 ”
ฆ

”|
 ”

จ”
| ”

ฉ
”|

 ”
ด”

|
”ต

”|
 ”

บ”
| ”

ป”
| ”

ฝ”
| ”

พ”
| ”

ม”
|

”ล
”|

 ”
ส”

| ”
ห”

| ”
หฑ

”|
 ”

หฒ
”|

 ”
หธ

”|
”ห

ล”
| ”

อ”
| ”

กว
”|

 ”
ข

ว”
| ”

ค
”|

 ”
ค

ว”
|

”ฆ
ว”

| ”
ง”

| ”
งว

”|
 ”

จย
”|

 ”
จว

”|
 ”

ช
”|

”ช
ว”

| ”
ซ

”|
 ”

ซ
ย”

| ”
ซ

ว”
| ”

ฌ
”|

 ”
ญ

”|
”ญ

ย”
| ”

ญ
ว”

| ”
ฑ

”|
 ”

ฑ
ย”

| ”
ฑ

ว”
| ”

ฒ
”|

”ฒ
ย”

| ”
ฒ

ว”
| ”

ตว
”|

 ”
ถ”

| ”
ถย

”|
 ”

ถว
”|

”ท
”|

 ”
ทย

”|
 ”

ธ”
| ”

ธย
”|

 ”
ธว

”|
 ”

น
”|

”บ
ย”

| ”
บว

”|
 ”

ปย
”|

 ”
ปว

”|
 ”

ผ”
| ”

ผย
”|

”ผ
ว”

| ”
ฝย

”|
 ”

ฝว
”|

 ”
พย

”|
 ”

พว
”|

 ”
ฟ

”|
”ฟ

ย”
| ”

ฟ
ว”

| ”
มย

”|
 ”

มล
”|

 ”
มว

”|
 ”

ย”
|

”ย
ว”

| ”
ลย

”|
 ”

ลว
”|

 ”
ว”

| ”
วว

”|
 ”

สย
”|

”ส
ว”

| ”
หฆ

”|
 ”

หฆ
ว”

| ”
หง

”|
 ”

หง
ว”

|
”ห

ฌ
”|

 ”
หญ

”|
 ”

หฑ
ย”

| ”
หฑ

ว”
| ”

หฒ
ย”

|
”ห

ฒ
ว”

| ”
หด

”|
 ”

หธ
ย”

| ”
หธ

ว”
| ”

หน
”|

”ห
น

ย”
| ”

หบ
”|

 ”
หม

”|
 ”

หม
ย”

| ”
หม

ว”
|

”ห
ย”

| ”
หย

ว”
| ”

หล
ว”

| ”
หว

”|
 ”

หว
ย”

|
”ห

วว
”|

 ”
หอ

”|
 ”

หฮ
ง”

| ”
หฮ

ญ
”|

 ”
หฮ

น
”|

”ห
ฮม

ว”
| ”

หฮ
ย”

| ”
หฮ

ล”
| ”

หฮ
ลย

”|
 ”

หฮ
ว”

|
”อ

ย”
| ”

ฮ”
| ”

ฮง
”|

 ”
ฮญ

”|
 ”

ฮน
”|

 ”
ฮบ

”|
”ฮ

ม”
| ”

ฮม
ย”

| ”
ฮม

ว”
| ”

ฮย
”|

 ”
ฮย

ว”
|

”ฮ
ล”

| ”
ฮว

”|
 ”

ฮว
ว”

| ”
ฯฒ

ฯ”

””
| ”

..”
|

”.
.ะ

”|
 ”

..า
”|

”.
ั.ว

ะ”
| ”

.ี.”
|

”.
ุ.”

| ”
..ว

”|
”.

.อ
”|

 ”
..อ

ย”
|

”.
.ะ

อ”
| ”

..า
ย”

|
”.

.า
ว”

| ”
..า

ะ”
|

”.
ั.”

| ”
.ั.ว

”|
”.

ิ.”
| ”

.ิ.ว
”|

”.
ี.อ

า”
| ”

.ุ.ย
”|

”.
ู.”

| ”
เ..

”|
”เ

..ย
”|

”เ
..ว

”|
”เ

..ะ
”|

 ”
เ..

า”
|

”เ
..า

ะ”
| ”

เ.ี.
ย”

|
”เ

.ี.ย
ว”

| ”
เ.ี.

ยะ
”|

”แ
..”

| ”
แ.

.ะ
”|

”โ
..”

| ”
โ.

.ย
”|

”โ
..ว

”|
 ”

โ.
.ะ

”|
”ไ

..”

 ””
|

”ก
”|

”ง
”|

”ด
”|

”น
”|

”บ
”|

”ม
” ””

|
”x

่”|
”x

้”|
”x

๊”|
”x

๋”|
”x

์”

Fi
gu

re
3.

8:
To

ke
ns

in
a

T
ha

is
cr

ip
t

sy
lla

bl
e

in
pu

t
ve

ct
or

CHAPTER 3. RESULTS 79

ic
on

s
v
ow

el
f
co
n
s

to
n
e

””|
”ກ
”|
”ຂ
”|
”ຈ
”|
”ດ
”|
”ດ
ສ”
|”
ຕ”
|”
ຕສ

”|
”ຖ
ຈ”
|”
ຖສ

”|
”ບ
”|
”ປ
”|
”ຜ
”|
”ຝ
”|
”ພ
”|
”ມ
”|

”ສ
”|
”ຫ
”|
”

”|
”ອ
”|
”ອ
ກ”
|”
ກວ
”|
”ຂ
ວ”
|”
ຄ”
|

”ຄ
ຍ”
|”
ຄວ
”|
”ງ
”|
”ງ
ວ”
|”
ຈຍ
”|
”ຈ
ວ”
|”
ຊ”
|

”ຊ
ຍ”
|”
ຊຢ

”|
”ຊ
ວ”
|”
ຍ”
|”
ຍຍ

”|
”ຍ
ວ”
|”
ດກ

”|
”ດ
ງ”
|”
ດຍ

”|
”ດ
ດ”
|”
ດນ

”|
”ດ
ມ”
|”
ດຢ

”|
”ດ
ສຍ

”|
”ດ
ສຢ

”|
”ດ
ສວ
”|
”ດ
ອນ

”|
”ດ
ອບ

”|
”ດ
ອມ

”|
”ຕ
ກ”
|”
ຕງ
”|
”ຕ
ຍ”
|”
ຕວ
”|
”ຕ
ສຢ

”|
”ຕ
ສວ
”|

”ຕ
ອງ
”|
”ຕ
ອນ

”|
”ຖ
”|
”ຖ
ງ”
|”
ຖຈ
ຍ”
|”
ຖດ

”|
”ຖ
ວ”
|

”ຖ
ສຍ

”|
”ຖ
ສວ
”|
”ຖ
ອງ
”|
”ທ
”|
”ທ
ກ”
|”
ທຈ

”|
”ທ
ຈວ
”|
”ທ
ຍ”
|”
ທດ

”|
”ທ
ນ”
|”
ທບ

”|
”ທ
ມ”
|”
ທສ

”|
”ທ
ສຍ

”|
”ທ
ສຢ

”|
”ທ
ສວ
”|
”ທ
ອງ
”|
”ທ
ອຍ

”|
”ນ
”|
”ນ
ຍ”
|”
ບຍ

”|
”ບ
ຢ”
|”
ບວ
”|
”ປ
ຍ”
|”
ປຢ

”|
”ປ
ວ”
|”
ຜຍ

”|
”ຜ
ວ”
|”
ຝຍ

”|
”ຝ
ວ”
|”
ພຢ

”|
”ພ
ວ”
|

”ຟ
”|
”ຟ
ຍ”
|”
ຟຢ

”|
”ຟ
ວ”
|”
ມຍ

”|
”ມ
ຢ”
|”
ມລ

”|
”ມ
ວ”
|”
ຢ”
|”
ຢຍ

”|
”ຢ
ວ”
|”
ລ”
|”
ລຍ

”|
”ລ
ຢ”
|

”ລ
ວ”
|”
ວ”
|”
ວວ
”|
”ສ
ຍ”
|”
ສຢ

”|
”ສ
ວ”
|”

”|
”

ວ”
|”

”|
”

ຍ”
|”
ຫດ

”|
”

”|
”ຫ
ບ”
|

”
”|
”

ຢ”
|”

ວ”
|”

”|
”

ວ”
|”
ຫອ

ບ”
|

”ຫ
ຮງ
”|
”ຫ
ຮຍ
”|
”ຫ
ຮນ
”|
”ຫ
ຮມ
ວ”
|”
ຫຮ

ຢ”
|”
ຫຮ

ລ”
|

”ຫ
ຮວ
”|
”ອ
ກວ
”|
”ອ
ຈ”
|”
ອດ

”|
”ອ
ນ”
|”
ອບ

”|
”ອ
ມ”
|

”ອ
ອນ

”|
”ຮ
”|
”ຮ
ງ”
|”
ຮຍ
”|
”ຮ
ດ”
|”
ຮນ
”|

”ຮ
ບ”
|”
ຮມ
”|
”ຮ
ມວ
”|
”ຮ
ຢ”
|”
ຮຢ
ວ”
|”
ຮລ
”|

”ຮ
ລຢ

”|
”ຮ
ລວ
”|
”ຮ
ວ”
|”
ຮວ
ວ”
|”
ໜ
”|
”ໝ
”|
”ໝ
ວ”

 ””|
”..
”|
”..
ອ”
|

”..
ະ”
|”
..ະ
ອ”
|

”.ີ.
”|
”.ຸ.
”|

”..
ຍ”
|”
..ວ
”|

”..
ວຍ
”|
”..
ອຍ

”|
”..
ະຍ
າ”
|”
..າ
”|

”..
າຍ
”|
”..
າວ
”|

”..
າະ
”|
”..
ຽ”
|

”..
ຽວ
”|
”.ັ.
”|

”.ັ.
ວ”
|”
.ຳa
.”|

”.ິ.
”|
”.ິ.
ວ”
|

”.ີ.
ອາ
”|
”.ຸ.
ຍ”
|

”.ູ.
”|
”.ົ.
”|

”.ົ.
ວ”
|”
.ົ.ວ
ະ”
|

”.ໍ.
”|
”.ໍ.
າ”
|

”ເ.
.”|
”ເ.
.ຍ
”|

”ເ.
.ວ
”|
”ເ.
.ະ
”|

”ເ.
.າ
ະ”
|”
ເ.ັ.
ຍ”
|

”ເ.
ິ.”|
”ເ.
ີ.ຍ
”|

”ເ.
ົ.າ
”|
”ແ
..”
|

”ແ
..ະ
”|
”ໂ
..”
|

”ໂ
..ຍ
”|
”ໂ
..ວ
”|

”ໂ
..ະ
”|
”ໄ
..”

 ””| ”ກ
”|

”ງ
”|

”ດ
”|

”ນ
”|

”ບ
”|

”ມ
” ””| ”x

່”|
”x
້”|

”x
໊”|

”x
໋”| ”x
໌”

Fi
gu

re
3.

9:
To

ke
ns

in
a

La
o

sc
rip

t
sy

lla
bl

e
in

pu
t

ve
ct

or

CHAPTER 3. RESULTS 80

3.5 Mapping between the scripts

As a first step in mapping between the scripts, the each input token of each script

were given a corresponding value equal to its frequency rank order. The most frequent

token was given the value of 1 and the least frequent token was given the largest value.

The tokens were then paired up in frequency rank order with tokens from other scripts.

The charts were drawn with histogram of the frequency distribution of each segment

of a syllable, a standard scatterplot with a central line and a smooth scatter plot.

The resulting charts are given in Figures 3.10 to 3.15.

Together, these charts provide a graphic indication of the degree of complexity

for the conversion process. In the simplest cases, like the initial consonants of the

Gen and Orm scripts, the most frequent tokens of the source script matched the

most frequent tokens in the target script. However, in more complex cases like that

between Gen and Lao vowels, there is no simple correlation between the tokens of the

source and target scripts.

Table 3.15: Correlation of rank ordering in different combinations of presyllable seg-
ments

Pre-syllable initial consonant

GEN 1.00 0.98 0.83 0.81
0.41 ORM 0.98 0.83 0.81
0.32 0.73 NRM 0.80 0.81
0.22 0.51 0.61 TAI 0.93
0.04 0.40 0.54 0.60 LAO

Pre-syllable vowel

Correlation coefficients were also calculated for the rank order of each pair of

CHAPTER 3. RESULTS 81

presyllables and syllable segments. The results are shown in Tables 3.15 and 3.16,

respectively. Presyllable consonants and final consonants exhibited a high correlation

between corresponding segments in the other scripts. This was also reflected by the

simple linear relationship seen graphically in Figures 3.10 and 3.12. There was also a

strong correlation observed between the rank orders of vowels and tone markers of the

Thai and Lao scripts. The tone marking of the generic script had a high correlation

with that of the New Roman script. Similarly, Thai and Lao tone marking also

had a high degree of correlation. Generic script vowels also were closely correlated

with those of Old Roman script. The smooth scatter plots suggest that while many

elements of the other combination of segments tend to correlate, the relationship

between the scripts is fairly complex. This was particularly evident in comparing the

relationship between the Roman to the nonRoman initial consonants and vowels in

Figures 3.12 and 3.13.

Table 3.16: Correlation of rank ordering of different combination of syllable segments

Initial consonant
GEN 0.83 0.40 0.42 0.35

0.92 ORM 0.65 0.47 0.36
0.54 0.61 NRM 0.39 0.20
0.51 0.54 0.28 TAI 0.59
0.48 0.51 0.26 0.80 LAO

Vowel

Final consonant
GEN 0.88 0.73 0.96 0.91

0.59 ORM 0.81 0.89 0.84
0.95 0.55 NRM 0.75 0.70
0.53 0.40 0.50 TAI 0.91
0.53 0.43 0.49 0.80 LAO

Tone

CHAPTER 3. RESULTS 82

Figure 3.10: Comparison of initial consonants of pre-syllables (Pre-Icn)

CHAPTER 3. RESULTS 83

Figure 3.11: Comparison of vowels of pre-syllables (Pre-Vow)

CHAPTER 3. RESULTS 84

Figure 3.12: Comparison of initial consonants of syllables (Icns)

CHAPTER 3. RESULTS 85

Figure 3.13: Comparison of vowels of syllables (Vow)

CHAPTER 3. RESULTS 86

Figure 3.14: Comparison of final consonants of syllables (Fcns

CHAPTER 3. RESULTS 87

Figure 3.15: Comparison of syllable tone markers (Ton)

CHAPTER 3. RESULTS 88

3.5.1 IC3 Learning

The effectiveness of IC3 learning of transcription was tested in an experiment where

increasing portions of the parallel phonemes list were subjected to ID3 decision tree

learning. The results of 5 separate runs were averaged together and are shown in

Figures 3.16 to 3.20. Each point on these graphs represent an average of the outcome

for 3 test runs. Standard deviation of these values was typically ±0.05.

Without exception, the transcription of the final consonants was the most accurate

of all phonemes. Likewise, the predicted transcription of the tone mark and the initial

consonant were the most suspect.

Generally, the accuracy of the ID3 based transcription increased as fraction of

the text sample increased. However in the case of converting initial consonants of

the generic script into Thai appeared to diminish with the increased portion of the

syllabus list. As expected, transcription between two Roman scripts or two non-

Roman script produced more accurate results than attempts to transcribe between a

Roman script and a non-Roman script.

3.5.2 Neural networks with back propagation

A number of preliminary experiments were run to determine the learning rate of the

neural networks. The neural network routines of the AI3R package provided the sum

of the total propagated error for each iteration as an indicator of progress in the

learning process.

Initial studies were conducted with 1 hidden layer of the same size as the input

vector. After 300 iterations, the residual propagated error was compared to the accu-

racy of the predicted outcomes. As shown in Figure 3.21, the training set exhibited

a clear correlation between the size of the propogated error and the accuracy of the

CHAPTER 3. RESULTS 89

0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Source: Gen, Target: Lao

Portion allocated to the Training set

F
ra

ct
io

n
co

rr
ec

t

initcons
vowels
finalcons
tone

0.2 0.4 0.6 0.8
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

Source: Gen, Target: Tai

Portion allocated to the Training set

F
ra

ct
io

n
co

rr
ec

t

initcons
vowels
finalcons
tone

0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Source: Gen, Target: Nrm

Portion allocated to the Training set

F
ra

ct
io

n
co

rr
ec

t

initcons
vowels
finalcons
tone

0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Source: Gen, Target: Orm

Portion allocated to the Training set

F
ra

ct
io

n
co

rr
ec

t

initcons
vowels
finalcons
tone

Figure 3.16: ID3 machine learning of transcription from the Generic script

CHAPTER 3. RESULTS 90

0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Source: Orm, Target: Lao

Portion allocated to the Training set

F
ra

ct
io

n
co

rr
ec

t

initcons
vowels
finalcons
tone

0.2 0.4 0.6 0.8
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

Source: Orm, Target: Tai

Portion allocated to the Training set

F
ra

ct
io

n
co

rr
ec

t

initcons
vowels
finalcons
tone

0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Source: Orm, Target: Nrm

Portion allocated to the Training set

F
ra

ct
io

n
co

rr
ec

t

initcons
vowels
finalcons
tone

0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Source: Orm, Target: Gen

Portion allocated to the Training set

F
ra

ct
io

n
co

rr
ec

t

initcons
vowels
finalcons
tone

Figure 3.17: ID3 machine learning of transcription from the Old Roman script

CHAPTER 3. RESULTS 91

0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Source: Nrm, Target: Lao

Portion allocated to the Training set

F
ra

ct
io

n
co

rr
ec

t

initcons
vowels
finalcons
tone

0.2 0.4 0.6 0.8
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

Source: Nrm, Target: Tai

Portion allocated to the Training set

F
ra

ct
io

n
co

rr
ec

t

initcons
vowels
finalcons
tone

0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Source: Nrm, Target: Gen

Portion allocated to the Training set

F
ra

ct
io

n
co

rr
ec

t

initcons
vowels
finalcons
tone

0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Source: Nrm, Target: Orm

Portion allocated to the Training set

F
ra

ct
io

n
co

rr
ec

t

initcons
vowels
finalcons
tone

Figure 3.18: ID3 machine learning of transcription from the New Roman script

CHAPTER 3. RESULTS 92

0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Source: Tai, Target: Lao

Portion allocated to the Training set

F
ra

ct
io

n
co

rr
ec

t

initcons
vowels
finalcons
tone

0.2 0.4 0.6 0.8
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

Source: Tai, Target: Gen

Portion allocated to the Training set

F
ra

ct
io

n
co

rr
ec

t

initcons
vowels
finalcons
tone

0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Source: Tai, Target: Nrm

Portion allocated to the Training set

F
ra

ct
io

n
co

rr
ec

t

initcons
vowels
finalcons
tone

0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Source: Tai, Target: Orm

Portion allocated to the Training set

F
ra

ct
io

n
co

rr
ec

t

initcons
vowels
finalcons
tone

Figure 3.19: ID3 machine learning of transcription from the Thai script

CHAPTER 3. RESULTS 93

0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Source: Lao, Target: Gen

Portion allocated to the Training set

F
ra

ct
io

n
co

rr
ec

t

initcons
vowels
finalcons
tone

0.2 0.4 0.6 0.8
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

Source: Lao, Target: Tai

Portion allocated to the Training set

F
ra

ct
io

n
co

rr
ec

t

initcons
vowels
finalcons
tone

0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Source: Lao, Target: Nrm

Portion allocated to the Training set

F
ra

ct
io

n
co

rr
ec

t

initcons
vowels
finalcons
tone

0.2 0.4 0.6 0.8

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Source: Lao, Target: Orm

Portion allocated to the Training set

F
ra

ct
io

n
co

rr
ec

t

initcons
vowels
finalcons
tone

Figure 3.20: ID3 machine learning of transcription from the Lao script

CHAPTER 3. RESULTS 94

transcription. It was interesting to note that when Lao and Gen were used as the

source script, the outcomes were nearly correct despite propagated error.

10 20 30 40 50 60 70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Propagated error

Tr
ai

ni
ng

 s
et

 c
or

re
ct

ne
ss Gen

Lao
Nrm
Orm
Tai

Figure 3.21: Training set vs propagated errors

However, the residual propagated error appeared to be nearly independant of the

errors in transcription observed with the test set. The scatterplot comparing residual

propagated error to errors of transcription of the test set is shown in Figure 3.22.

These results demonstrate the need to test outcomes directly.

Some initial results for learning Nrm and Tai scripts are given in Figures 3.23 and

3.24, respectively. These figures show the total error back proprogated on each iter-

ation. These initial studies were performed with one hidden layer that was same size

as the input vector. These learning curves suggest that vowels and final consonants

CHAPTER 3. RESULTS 95

10 20 30 40 50 60 70

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Propagated error

Te
st

 s
et

 c
or

re
ct

ne
ss

Gen
Lao
Nrm
Orm
Tai

Figure 3.22: Test vs propagated errors

were rapidly learned, while tone marks and initial consonants took longer to learn.

These results were consistent with the correlations seen in Section 3.5. It was found

that 300 iterations achieved statistically the same level of precision as was seen with

after 500, 1000, and 5000 iterations.

In another experiment, neural networks were trained with between 0 and 3 hidden

layers for each source-target script pair. The hidden layers had the same number of

nodes as the input vector of the source script. (The size of the input vector for each

script is given in Table 3.14. Each trial attempted to develop 6 separate networks

that would transcribe the input script tokens into one of the phonemes of the target

script. A set of neural networks was created for each combination of source and

CHAPTER 3. RESULTS 96

0 50 150 250

0
20

40
60

80

Source: Nrm, Target: Orm

Iterations

P
ro

pa
ga

te
d

er
ro

r ic
vw
fc
tn

0 50 150 250
0

20
40

60
80

Source: Nrm, Target: Gen

Iterations

P
ro

pa
ga

te
d

er
ro

r ic
vw
fc
tn

0 50 150 250

0
20

40
60

80

Source: Nrm, Target: Tai

Iterations

P
ro

pa
ga

te
d

er
ro

r ic
vw
fc
tn

0 50 150 250

0
20

40
60

80

Source: Nrm, Target: Lao

Iterations

P
ro

pa
ga

te
d

er
ro

r ic
vw
fc
tn

Figure 3.23: Phoneme learning of Nrm syllables

CHAPTER 3. RESULTS 97

0 50 150 250

0
20

40
60

80

Source: Tai, Target: Orm

Iterations

P
ro

pa
ga

te
d

er
ro

r ic
vw
fc
tn

0 50 150 250
0

20
40

60
80

Source: Tai, Target: Nrm

Iterations

P
ro

pa
ga

te
d

er
ro

r ic
vw
fc
tn

0 50 150 250

0
20

40
60

80

Source: Tai, Target: Gen

Iterations

P
ro

pa
ga

te
d

er
ro

r ic
vw
fc
tn

0 50 150 250

0
20

40
60

80

Source: Tai, Target: Lao

Iterations

P
ro

pa
ga

te
d

er
ro

r ic
vw
fc
tn

Figure 3.24: Phoneme learning of Thai syllables

CHAPTER 3. RESULTS 98

target script. Each trial was repeated 3 times. In addition, the syllable catalogue

was distributed randomly between training and test sets. Three levels of partitioning

were tested, namely, 0.1, 0.5 and 0.9. In short, 1,080 networks were generated and

tested in this experiment. Despite the fact that only 300 iterations were used for

each learned network, it took 14 days for 10 dual-core iMacs running at 2.13 GHz to

complete this processing.

After 300 iterations, the accuracy of the network to transcribe the training and

test sets were checked not only for each phoneme but also for the composition word

as well. Tables 3.20 and 3.17 show the results for the training set and the test set,

respectively. Each value represents the average of 3 trial runs. Standard deviations

of 0.02 were typical.

As expected, the predicted outcomes of the training set were more accurate than

that of the test set. In fact It was also important to recognize that the error of the

composite words were higher than for any single phoneme. It was also interesting

to note that adding hidden layers did not improve the accuracy of the predicted

phoneme.

To better understand the interaction between the various factors leading to a

transcription. Various combinations of fractors were tested to develop a generalized

linear model (GLM) of the outcome of the neural network training. The factors tested

included the source and target scripts, the fraction of the syllables used in the training

set, the number of hidden layers. Insignficant factors were removed from the model

on the basis of analysis of variance (ANOVA). The resulting linear model is shown

in Equation 3.5. The calculated coefficients and residuals of this GLM are shown in

Table 3.21 and the analysis of variance (ANOVA) in Table 3.22.

CorrectnessTestset = Src+ Target+ Frag (3.5)

CHAPTER 3. RESULTS 99

0 50 150 250

0
20

40
60

80

Source: Gen, Target: Orm

Iterations

P
ro

pa
ga

te
d

er
ro

r 0
1
2
3

0 50 150 250
0

20
40

60
80

Source: Gen, Target: Nrm

Iterations

P
ro

pa
ga

te
d

er
ro

r 0
1
2
3

0 50 150 250

0
20

40
60

80

Source: Gen, Target: Tai

Iterations

P
ro

pa
ga

te
d

er
ro

r 0
1
2
3

0 50 150 250

0
20

40
60

80

Source: Gen, Target: Lao

Iterations

P
ro

pa
ga

te
d

er
ro

r 0
1
2
3

Figure 3.25: Hidden layer of Gen syllables

CHAPTER 3. RESULTS 100

0 50 150 250

0
20

40
60

80

Source: Orm, Target: Gen

Iterations

P
ro

pa
ga

te
d

er
ro

r 0
1
2
3

0 50 150 250
0

20
40

60
80

Source: Orm, Target: Nrm

Iterations

P
ro

pa
ga

te
d

er
ro

r 0
1
2
3

0 50 150 250

0
20

40
60

80

Source: Orm, Target: Tai

Iterations

P
ro

pa
ga

te
d

er
ro

r 0
1
2
3

0 50 150 250

0
20

40
60

80

Source: Orm, Target: Lao

Iterations

P
ro

pa
ga

te
d

er
ro

r 0
1
2
3

Figure 3.26: Hidden layer of Orm syllables

CHAPTER 3. RESULTS 101

0 50 150 250

0
20

40
60

80

Source: Nrm, Target: Orm

Iterations

P
ro

pa
ga

te
d

er
ro

r 0
1
2
3

0 50 150 250
0

20
40

60
80

Source: Nrm, Target: Gen

Iterations

P
ro

pa
ga

te
d

er
ro

r 0
1
2
3

0 50 150 250

0
20

40
60

80

Source: Nrm, Target: Tai

Iterations

P
ro

pa
ga

te
d

er
ro

r 0
1
2
3

0 50 150 250

0
20

40
60

80

Source: Nrm, Target: Lao

Iterations

P
ro

pa
ga

te
d

er
ro

r 0
1
2
3

Figure 3.27: Hidden layer of Nrm syllables

CHAPTER 3. RESULTS 102

0 50 150 250

0
20

40
60

80

Source: Tai, Target: Orm

Iterations

P
ro

pa
ga

te
d

er
ro

r 0
1
2
3

0 50 150 250
0

20
40

60
80

Source: Tai, Target: Nrm

Iterations

P
ro

pa
ga

te
d

er
ro

r 0
1
2
3

0 50 150 250

0
20

40
60

80

Source: Tai, Target: Tai

Iterations

P
ro

pa
ga

te
d

er
ro

r 0
1
2
3

0 50 150 250

0
20

40
60

80

Source: Tai, Target: Lao

Iterations

P
ro

pa
ga

te
d

er
ro

r 0
1
2
3

Figure 3.28: Hidden layer of Thai syllables

CHAPTER 3. RESULTS 103

0 50 150 250

0
20

40
60

80

Source: Lao, Target: Orm

Iterations

P
ro

pa
ga

te
d

er
ro

r 0
1
2
3

0 50 150 250
0

20
40

60
80

Source: Lao, Target: Nrm

Iterations

P
ro

pa
ga

te
d

er
ro

r 0
1
2
3

0 50 150 250

0
20

40
60

80

Source: Lao, Target: Tai

Iterations

P
ro

pa
ga

te
d

er
ro

r 0
1
2
3

0 50 150 250

0
20

40
60

80

Source: Lao, Target: Gen

Iterations

P
ro

pa
ga

te
d

er
ro

r 0
1
2
3

Figure 3.29: Hidden layer of Lao syllables

CHAPTER 3. RESULTS 104

Table 3.17: Accuracy of transcripting the training set from Gen
Figures indicate the fraction of correctly predicted outcomes. Each number

represents an average of 3 trial.

Src Target Hidden icns vow fcns ton syl
Gen Tai 0 0.90 0.95 1.00 0.99 0.84
Gen Tai 1 0.85 0.95 1.00 0.99 0.80
Gen Tai 2 0.82 0.96 1.00 1.00 0.79
Gen Tai 3 0.94 0.93 1.00 0.99 0.87
Gen Lao 0 0.95 0.96 1.00 0.99 0.90
Gen Lao 1 0.90 0.91 1.00 0.99 0.82
Gen Lao 2 0.92 0.97 1.00 0.99 0.89
Gen Lao 3 0.92 0.97 1.00 0.99 0.89
Gen Orm 0 1.00 0.95 0.98 0.95 0.89
Gen Orm 1 1.00 0.88 0.99 0.98 0.86
Gen Orm 2 0.99 0.93 1.00 0.99 0.92
Gen Orm 3 0.98 0.96 1.00 0.97 0.91
Gen Nrm 0 0.98 0.96 1.00 1.00 0.89
Gen Nrm 1 0.94 0.94 0.99 1.00 0.92
Gen Nrm 2 0.99 0.95 1.00 1.00 0.94
Gen Nrm 3 0.96 0.96 1.00 1.00 0.93

Table 3.18: Correctness of predicted outcomes using the test sets as input
Numbers represent the average fraction of correct renderings based on 3 separate

runs

Source Target script
script Gen Orm Nrm Tai Lao

Gen – 0.705 0.763 0.586 0.560
Orm 0.714 – 0.656 0.416 0.445
Nrm 0.783 0.622 – 0.554 0.515
Tai 0.611 0.503 0.611 – 0.619
Lao 0.641 0.465 0.590 0.603 –

CHAPTER 3. RESULTS 105

Table 3.19: Correctness of predicted outcomes using the training sets as input
Numbers represent the average fraction of correct renderings based on 3 separate

runs

Source Target script
script Gen Orm Nrm Tai Lao

Gen – 0.998 0.997 0.997 0.997
Orm 0.918 – 0.896 0.808 0.858
Nrm 0.909 0.871 – 0.872 0.831
Tai 0.921 0.852 0.894 – 0.816
Lao 0.997 0.997 0.998 0.997 –

Table 3.20: Accuracy of transcripting the test set from Gen
Figures indicate the fraction of correctly predicted outcomes. Each number

represents an average of 3 trials.

Src Target Hidden icns vow fcns ton syl
Gen Tai 0 0.69 0.75 0.99 0.85 0.57
Gen Tai 1 0.73 0.79 0.99 0.88 0.56
Gen Tai 2 0.77 0.82 0.99 0.85 0.52
Gen Tai 3 0.77 0.80 0.99 0.85 0.48
Gen Lao 0 0.73 0.75 0.87 0.87 0.51
Gen Lao 1 0.75 0.79 0.98 0.90 0.56
Gen Lao 2 0.76 0.79 0.97 0.92 0.58
Gen Lao 3 0.76 0.75 0.90 0.88 0.58
Gen Orm 0 0.98 0.92 1.00 0.79 0.71
Gen Orm 1 0.97 0.77 0.97 0.81 0.58
Gen Orm 2 0.96 0.90 1.00 0.80 0.69
Gen Orm 3 0.97 0.92 1.00 0.83 0.74
Gen Nrm 0 0.91 0.85 0.96 0.98 0.79
Gen Nrm 1 0.88 0.85 0.96 0.97 0.75
Gen Nrm 2 0.94 0.87 0.95 0.97 0.82
Gen Nrm 3 0.91 0.87 0.96 0.97 0.78

CHAPTER 3. RESULTS 106

Table 3.21: Residuals and coefficients of the GLM

Residuals:
Min 1Q Median 3Q Max

-0.119999 -0.039864 -0.001839 0.032364 0.166366

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.7764403 0.0240220 32.322 < 2e-16 ***
SrcLao -0.0976398 0.0252682 -3.864 0.000242 ***
SrcNrm -0.0225185 0.0233400 -0.965 0.337873
SrcOrm -0.1092955 0.0213578 -5.117 2.48e-06 ***
SrcTai -0.0883889 0.0233327 -3.788 0.000312 ***
TargetLao -0.1622669 0.0264517 -6.134 4.17e-08 ***
TargetNrm -0.0290091 0.0210838 -1.376 0.173120
TargetOrm -0.1264250 0.0236027 -5.356 9.71e-07 ***
TargetTai -0.1356896 0.0276680 -4.904 5.63e-06 ***
Frag 0.4027506 0.0550500 7.316 2.88e-10 ***
PropErr -0.0023630 0.0009049 -2.611 0.010965 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.

Residual standard error: 0.0577 on 72 degrees of freedom
Multiple R-squared: 0.7949, Adjusted R-squared: 0.7664
F-statistic: 27.9 on 10 and 72 DF, p-value: < 2.2e-16

The ANOVA analysis was consistent with the observation that correct transcrip-

tions involving Thai, Lao or Old Roman script were harder to achieve. At the same

time, increasing the size of the training set relative to the full number of possibilities

significantly helped to improve accuracy. It also showed that the propagated error of

a trained system had less influence on the accuracy of outcome than the other factors.

Comparison of word level performance is non-trival especially when attempting to

correct for the word frequency distribution and the differences between the phonetics

CHAPTER 3. RESULTS 107

Table 3.22: ANOVA of GLM

Df Sum Sq Mean Sq F value Pr(>F)
Src 4 0.19141 0.047853 14.3717 1.132e-08 ***
Target 4 0.55727 0.139319 41.8416 < 2.2e-16 ***
Frag 1 0.15751 0.157506 47.3038 1.856e-09 ***
PropErr 1 0.02271 0.022707 6.8197 0.01096 *
Residuals 72 0.23974 0.003330

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’

of Iu Mien words and Biblical proper names. Nevertheless, simple experiment was

attempted to gain some insight as to whether direct transcription was better than

a 2-step transcription via a generic script. In this experiment 50 words were chosen

at random from the full word list. The words were subjected to the neural net

transcription rules for each of the phonemes. The neural net transcription rules used

were derived by using a training set of 10% of the syllable list without hidden layers.

Accuracy of the computer-derived transcripts is shown in Table 3.23.

Table 3.23: Transcription of 50 random words via neural networks
Numbers indicate the number of words correctly rendered into the target script

Source Target script
script Gen Orm Nrm Tai Lao

Gen - 40 44 32 26
Orm 43 - 39 29 25
Nrm 46 41 - 31 32
Tai 18 22 23 - 37
Lao 23 25 27 45 -

The results of the transcription of the 50 random words were consistent with

CHAPTER 3. RESULTS 108

those obtained in the transcription of syllables. The results suggest that difficulties

in transcription are symmetrical. For example, the lower accuracy of Lao and Thai

transcriptions of words in Orm script was also seen when Lao and Thai words were

transcribed to Orm.

The second part of the experiment was to take output of transcription into the

generic script and transcribe it into the other scripts. The results of this experiment

is given in Table 3.24.

Table 3.24: Secondary transcriptions after transcribing 50 random words to the
Generic Script

Numbers indicate the number of words correctly rendered into the target script

Source Target source
script Orm Nrm Tai Lao
Orm 35 37 27 21
Nrm 39 41 31 25
Tai 17 14 11 12
Lao 19 22 17 15

This experiment would suggest that the second transcription introduces additional

errors into the transcription process. Thus, it would appear that a two-step transcrip-

tion imposes additional expense in both processing time and errors of transcription.

However, more experiments would be required to identify the extent of this cost.

3.6 Developing the web application

Once the databases for the the web application were established, Ruby on Rails was

invoked to create the framework for the web application that was described in the

Section 1.8. This automated step produced the components described in Table 3.25.

The learned neural networks were stored as YAML formatted objects that can be eas-

CHAPTER 3. RESULTS 109

ily loaded on demand. The links were added to the controller for the Rails application

for both the text decomposition class definitions and the neural network loader. In

this way, only the essential neural networks are loaded.

Table 3.25: Products of Rails application setup

Number of
Resources created files
Configuration files 5
Directories 31
How-To Documentation files 3
Javascript files 6
Log files 4
Session scripts 15
Web pages 6

Ruby on Rails was implemented as a framework that depends on a number of

of Ruby modules. Throughout the duration of this project, there were numerous

updates to the modules. As new features were added to the website, new modules

and updates would need to be installed. The list of modules currently used by the

website is given in Table 3.26. The Rails utility Bundler was used to manage the

dependencies of these 35 modules.

While the transcription results were promising, online users did not feel that

output was reliable enough across all scripts to be practical at this stage. Nevertheless,

the web environment was used as a forum to gain feedback. However, the original

Rails application proved to be to be too elaborate for this stage of development.

The site attracted insufficient volunteers to provide useful feedback. It would appear

that the formality of signing up for a website of limited use greatly reduced the

participation.

After 12 months with disappointing lack of growth in the use of the site, a simpler

CHAPTER 3. RESULTS 110

Table 3.26: Modules used in the online application

Module Version Module Version Module Version
abstract 1.0.0 diff-lcs 1.1.3 rake 0.9.2
actionmailer 3.0.9 erubis 2.6.6 rails 3.0.9
actionpack 3.0.9 gherkin 2.5.1 railties 3.0.9
activemodel 3.0.9 i18n 0.5.0 rdoc 3.9.4
activerecord 3.0.9 json 1.6.1 sqlite3 1.3.4
activeresource 3.0.9 mail 2.2.19 sqlite3-ruby 1.3.3
activesupport 3.0.9 mime-types 1.16 term-ansicolor 1.0.6
ai4r 1.9 nokogiri 1.5.0 thor 0.14.6
arel 2.0.10 polyglot 0.3.2 treetop 1.4.10
builder 2.1.2 rack 1.2.4 tzinfo 0.3.30
bundler 1.0.15 rack-mount 0.6.14 webrat 0.7.3
cucumber 1.1.0 rack-test 0.5.7

web application was developed. Screen shots of the new website have been included

in the following figures. The home page provides a basic introduction to the site and

related disclaimers. (Figure 3.30). After clicking on the link for the transcription

service, the users would recieve a form to submit Iu Mien text in the script of their

choosing. (Figure 3.31) The system would then develop a multi-script response in

HTML which is then sent back to the user. (Figure 3.32).

This new change in design appeared to be a step in the right direction as in the

past month, nearly 260 transcriptions were attempted. In the 2 previous years, less

than 10 transcriptions were attempted. More work is required to improve both the

quality of the transcriptions as well as the use of the online service.

CHAPTER 3. RESULTS 111

Figure 3.30: Login page

Figure 3.31: Submitting the text

CHAPTER 3. RESULTS 112

Figure 3.32: Viewing the transcribed text

CHAPTER 4

Conclusion

4.1 Key paradigms for this project

This project was greatly assisted by two important paradigms:

• The integration of unit test methods into class definition libraries:

Unit testing of software played an important and integrated part of the entire

development. During the early days of learning Ruby, test units were used to

verify the correctness of the code produced and the behavior of the software

developed. However, later in the project, the test units also became important

for identifying unexpected outcomes and interactions between modules. In fact

on several occasions, upgrading to radically new versions of modules was greatly

simplified because unit test methods had become a standard part of each class

definition.

• The use of statistical techniques to verify the relevance of observed

outcomes: A number of statistical approaches were used throughout this study

to better understand the nature of transcription. Correlation of frequency rank

order helped to distinguish between one-to-one and one-to-many relationships.

Smooth scatterplots were found to be more informative than standard scatter-

plots because color intensity provided a better hint of the underlying frequency.

Multiple sampling was used to block for random effects. ANOVA was helpful

113

CHAPTER 4. CONCLUSION 114

to identify the relative impact of various factors and to rule out synergistic ef-

fects. This study did not depend solely on any one statistical method but it was

interesting to note the consistency between the different methods in identifying

what combination of scripts pose the greatest challenge in transcription.

However, important lessons were also learned through failure. The design of the

web application is a good example. The initial design was far too complex for the

end user especially when the transcriptions produced were not publishable quality.

At this stage of the development, it would appear that a clean and simple interface

is more attractive to end users than layers of security.

4.2 Reliability of derived transcriptions

Acceptable results were obtained for transcriptions between a Roman script to another

Roman script as well as between an non-Roman script and another non-Roman script

especially if the neural net or the ID3 was based on a training set that represented

90% of all syllables. However, transcribing between a Roman and an non-Roman

script were disappointing with composite word error rates of 50%.

Having explored automated transcription of the Iu Mien, it is apparent that there

are a couple features that helped to contribute to these outcomes. Future research in

these areas could potentially reduce the error of transcription.

• Typographic errors: In the process of reducing words to syllables, the ef-

fective error rate was increased. A novice typist typically produce errors at a

rate of 5%, within an edited publication the error rate drops to the order of 1

per 10 thousand. At this rate, several hundred typos could be expected among

the million words published in a typical Bible translation. However, reducing a

CHAPTER 4. CONCLUSION 115

Bible to a list of unique syllables effectively concentrates the errors. What was

a few hundred per million words becomes a few hundred per thousand syllables

making the error within the training set of the order 10%. Such errors can

potentially create ambiguities in the textbase. Transcription rule development

would be hindered by such contradictions to good information. Removing errors

from the syllables list will increase the efficacy of the syllable list. It would also

have been better to handle words like ฯฒฯ as an exception or abbreviation.

• The phonetic model: It is clear that the simple phonetic model did not

provide enough information about the class of the character and the vowel length

of the syllable. These features are important considerations for the selection of

tone marks. Increasing the number of parsed features would not only provide

more effective clues but also reduce the bitwidth of the input. In theory, this

would also allow for better mapping of initial consonants and vowel features,

and increase the informational and statistical power of the values provided.

Based on the token patterns discovered in this study, it is possible to create

more refined rules that would further reduce the number of tokens needed to

describe a syllable. An example of such a parsing is given in Figures 4.1 to

4.2. Table 4.1 contrasts the effective input size compared to that used by this

study showing the informational gains to be expected. This would increase the

number of orthogonal features being parsed which would lead to better neural

networks.

Table 4.1 shows that the input tokens could be reduced in size for most scripts.

However, in the case of the New Roman script, it was not possible to determine

whether n or m were meant to be part of digraph like ng or a consonant modifier in

the following sequences: (mv, mx, nc, nd, nh, nj, nq, nv, nx, nz) Likewise, it

CHAPTER 4. CONCLUSION 116

Table 4.1: Input token size
Current Proposed

Old Roman 122 109
New Roman 123 125
Tai 179 125
Lao 220 104

is suspected that the following diphthong are actually a contraction between an open

pre-syllable and an open syllable. (a'ei, a'i, a'o, a'waa, a'yie) If either of

these observations are correct, even the input count of the New Roman script could

be shortened.

picon pdip pvow pstp

B|D|
G|K|
P|Q|
R|Z|
f|h|
k|l|

m|p|
s|t|
z

 w
y

yw

a
aa
c
e
i
o
u
ua
r
x

[
’
]

icons dip vow stp fcons ton

B|D|
E|F|
G|H|
J|K|
L|M|
N|P|
Q|R|
T|V|
W|Y|
Z|f|h|
k|l|m|
n|p|s|
t|v|z

 w
y

wy

a|aa|
ai|aai|
au|aau|
aye|c|

e|ei|eu|
i|ia|iu|
o|oi|r|
ru|u|

ua|x|xi

k
m
n
p
t
v

[
’
]

b
d
g
j
q

Figure 4.1: Revised Old Roman syllable parsing

CHAPTER 4. CONCLUSION 117

 pc
m
od

pi
co
n

pd
ip

pv
ow

ps
tp

[m n] b c d f g h k l m n ng p q s z

 [y] a aa aa
u ae ai au e ei i ie o oe
i

oi or ou u ua ui uo

 [’] cm
od

ic
on

d
ip

v
ow

st
p

f
co
n
s

to
n

 h hm m n

 b c d f g h j k l m n ng p q s t v w x z

 [w y] a|
aa
|

aa
i|a

au
|

ae
|a

i|
au

|e
|e

i|
er
|e

u|
i|

ia
|ia

a|
ia

au
|ia

e|
ia

u|
ie
|

ie
i|i

o|
io

r|i
ou

|
iu
|iu

a|
iu

i|o
|o

i|
or
|o

u|
u|

ua
|u

aa
|

ua
ai
|u

ae
|

ua
i|u

e|
ue

i|u
i|

uo

 [’] k m n ng p q t

 c h v x z

Fi
gu

re
4.

2:
R

ev
ise

d
N

ew
R

om
an

sy
lla

bl
e

pa
rs

in
g

CHAPTER 4. CONCLUSION 118

 pc
m
od

pi
co
n

ps
v
ow

pf
co
n

ps
tp

[ห]

 ก ข ฆ จ ฉ ด ต บ ป ฝ พ ม ล ส ห อ

 xั xี xุ
[า ว]

[ะ] iv
ow

cm
od

ic
on

cc
lu
s

sv
ow

to
n

f
v
ow

st
p

f
co
n

 เ แ โ ไ ห ฮ หฮ

 ก|
ข
|

ค
|ฆ

|
ง|

จ|
ฉ
|ช
|

ซ
|ฌ

|
ญ
|ฑ

|
ฒ
|ด
|

ต|
ถ|

ท|
ธ|

น
|บ
|

ป|
ผ|

ฝ|
พ|

ฟ
|ม
|

ย|
ล|

ว|
ส|

ห|
ฆ
|

อ|
ฮ

 ว ล ย ลย

 xั xิ xี xุ xู x่ x้ x๊ x๋ x์ ว วว อ อย ย า าย าว าอ

 [ะ] ก ง ด น บ ม

Fi
gu

re
4.

3:
R

ev
ise

d
th

e
T

ha
is

yl
la

bl
e

pa
rs

in
g

CHAPTER 4. CONCLUSION 119

 pc
m
od

pi
co
n

ps
v
ow

pf
v
ow

ps
tp

 ຫ ຕ ຖ ດ ອ

 ຕ ລ ບ ກ ມ ປ ອ ສ ຈ ພ ຝ ຂ ຜ ດ ຫ

[xີ x
ຸ]

[ອ]
[ະ] iv

ow
cm

od
ic
on

cc
lu
s

sv
ow

to
n

f
v
ow

st
p

f
co
n

 ເ ໂ ໄ ແ ຮ ດ ຫ ຕ ອ ທ ຖ ບ|
ດ|

ນ|
ສ|

ຫ|
ລ|

ອ|
ປ|

ຕ|
ມ|

ກ|
ງ|

ຍ|
ຢ|

ຈ|
ຮ|

ວ|
ຄ|

ຂ|
ຜ|

ພ|
ທ|

ຖ|
ຟ|

ຝ|
ຊ|

ໝ
|ໜ

 ຢ ວ ຍ ລ xຳa x
ິ

x
ີ

x
ົ

x
ັ

x
ໍ

x
ຸ

x
ູ x

້
x
່

x
໋

x
໊

x
໌ ຍ ອ ວ າ ຽ [ະ] ງ ນ ກ ມ ບ ດ

Fi
gu

re
4.

4:
R

ev
ise

d
th

e
La

o
sy

lla
bl

e
pa

rs
in

g

CHAPTER 4. CONCLUSION 120

4.3 Improving the speed and performance

A neural network represents an computationally expensive operation. Given that the

word distribution conformed to Zapf’s Law, storing the equivalent syllables for the

200 most used Iu Mien words in a hashed array should effectively reduce the error rate

for 2 main reasons. A hash table of the 200 most used words represents 90% of words

communicated and would generally ensure that at least 90% of the transcribed words

would be correct. Secondly, studies in English, French and German have shown that

the most infrequent words tend to follow regular rules more closely than frequently

used words, and there appears to be a regularization process across these languages

that convert ancestral forms to gradually yield to emerging linguistic rules.[48, 49]

These authors have suggested that such rules may also apply to the evolution of other

languages as well. If this is true of Iu Mien, removing the most frequent words would

have the potential of also removing a good portion of the irregular words which would

make it easier to generate a more accurate neural network. At the same time, it would

greatly improve performance as a hashed lookup is much faster than decomposing the

word into syllables and phonemes, calculating the equivalent token via neural network

and recomposing the output.

4.4 Choice of programming environment

The selection of Ruby as the scripting language for this project was for the most part

an excellent choice. The built-in support for cross-indexed documentation as well as

both unit and integrity checking were features of the language that were exploited

throughout this project. As a programming language, Ruby truly lives up to its

author’s intent that Ruby syntax and design is governed by the law of minimum

CHAPTER 4. CONCLUSION 121

surprise.[50]

In retrospect, Ruby was a easy language to learn and master as it exhibited the

flexibility and power of the C programming language within the object-oriented syntax

of Java. However, throughout the duration of this project, Ruby was a language

with cutting edge features in great demand within the highly competitive arena of

web application development. The language has undergone multiple and significant

changes throughout the 5 year history of this project. (The first programs were

developed on Ruby, version 1.8.1 and current development is done on version 1.9.3.)

For the most part, upgrades could be ignored until a new module was required for

the next stage of development. Gem, the Ruby installed package manager, did an

excellent job of handling dependencies between modules. However, installing a new

module would often require updating others and some of those updates represented

radical changes to early versions. Fortunately, the unit and integrity tests automated

the process of checking for breaks in the software as it would not be uncommon for

an update to break several routines. While most of the fixes were simple matters of

configuration attribute settings or adopting new syntax, it nevertheless added to the

amount of effort needed to maintain the development environment. Such is the cost

of using cutting-edge technology on a project.

Within the industry, the selection of a programming environment still continues

to be a very personal decision. I do feel that Ruby was a good choice of programming

language for me as it was a good fit to who I am and how I work as a programmer. I

found using Ruby easy and enjoyed using it because it modeled the way I work and

think, especially in the following ways.

• I could analyze problems by building class libraries which were relatively easy

to refactor.

CHAPTER 4. CONCLUSION 122

• I could address my paranoia about software failures with copious unit and in-

tegrity tests.

• My comments and documentation within the source code could be automatically

cross-indexed and reformatted as a collection of webpages.

• It allowed precise control for switching between UTF-8 and 8-bit ASCII in the

strings and regular expressions of my software.

With recent developments and releases of new versions for other programming lan-

guages and web application, the search for a reliable development environment would

no doubt reveal more options than what was available 5 years ago. Each language

has been tailored to the needs and mindset of its users. The flame wars between

programming language user groups have greatly died down and have been largely

replaced by rapid porting of the best features from one languages to another. Both

Ruby and Ruby on Rails have raised programmer expectations of the languages they

work with and other open source languages have been borrowing Ruby technology

and paradigms. JRuby, Groovy, Django, and CakePHP are popular attempts to port

Rails frameworks to other programming languages. Even new languages like Lua and

Erlang have built heavily on the lessons learned with Ruby.

The competitive development of open-source languages like Ruby will mean that

programmers can continue to expect new programming tools to facilitate their work

and better model the way they work and think. Even current languages are un-

dergoing immense development to better support Unicode characters, application

frameworks, and unit testing. Given the changes seen in the past 5 years, there is no

doubt that the programming languages that will arise in the next decade promise to

provide significant changes on how we conceptualize and develop computer solutions

to problems.

APPENDIX A

The Thai and Lao Scripts

Thai and Lao are related languages which share common approaches to phonetics

and writing systems. Historically both writing systems date back to 1283 when

King Rankhamhaeng of Sukhothai adapted the Khmer script for use with the Thai-

Lao languages. This worked well as both languages have 5 tones: mid, low, high,

falling and rising. From these origins in north-central Thailand, the use of the script

proliferated and underwent further modification and adaptation as it migrated along

the major trade routes of the Chao Phraya River to the south and the Mekong River

to the north. Within the cultural centers of the Lao and Siamese kingdoms, the Lao

and Thai script diverged.

In Lao the emphasis was on simplifying the script. For the most part this was

achieved by reducing the number of consonant and vowel markers. However, several

regional variants emerged and were used until a single national script was established

by the 1960 Official Order of the Lao government.[51]

For Thai, non-phonetic elements were introduced into the writing system to pro-

vide information about the origins of words. This is achieved through use of ho-

mophones and the use of a garun to include unspoken characters that occur in the

original spelling of borrowed works in their language of origin. Foreign learners of

Thai are often confused by the fact that [ขฃคฅฆ], [ฐฑฒถทธ], and [ซศษส] are sets

of characters that have been used to represent ’k’, ’t’ and ’s’ consonants, respectively.

The actual character used in the official spelling of a word depends on the tone and

123

APPENDIX A. THE THAI AND LAO SCRIPTS 124

Table A.1: Tone marking rules for Thai and Lao scripts

Consonant Vowel Spoken tone
class length mid low high falling rising

Low long x x้ x่
คา ค้า ค่า

Mid long x x่ x้ x๊ x๋
กา ก่า ก้า ก๊า ก๋า

Mid short x x๊ x้
กะ ก๊ะ ก้ะ

High long x่ x้ x
ข่า ข้า ขา

origin of the word.

In both the Lao and Thai scripts, there are three distinct classes of consonants:

low, mid and high. Each class of consonant has its inherent tone level. Both scripts

use tone markers to alter the inherit tone of the consonants class. Many of the low

class consonants have corresponding high class consonants of the same sound. For

example, in Thai an initial ‘s’ sound can be rendered as either the low class ซ or the

high class ส, depending on the tone required. In both scripts, unmatched low class

consonants a silenced high class character marker to create the high class equivalent.

Thus, an initial ‘m’ sound is rendered in Thai as either the low class ม or the high

class digraph หม. The rules for tone marking in Thai and Lao are based on the class

of the consonant, the length of the vowel and the tone change marker given. These

rules have been summarized in Table A.1. The phonetic names, class and role of

Unicode codes points for Thai and Lao characters are given in Tables A.2 and A.3,

respectively.

Because the Thai and Lao national scripts have both evolved with complicated

APPENDIX A. THE THAI AND LAO SCRIPTS 125

reading rules, there are number of changes made to simplify literacy when these scripts

were adapted for use with Iu Mien. For example, Iu Mien vowel lengths are not as

prominent a feature as they are in Thai and Lao. So short vowels have been used in

presyllables and long vowels in syllables. Some consonants and vowel combinations

were added to render phonetic features unique to Iu Mien.[52]

APPENDIX A. THE THAI AND LAO SCRIPTS 126

Ta
bl

e
A

.2
:

T
he

T
ha

iC
ha

ra
ct

er
Se

t

U
ni
co
de

D
es
cr
ip
tio

n
U
ni
co
de

D
es
cr
ip
tio

n
U
ni
co
de

D
es
cr
ip
tio

n
U
ni
co
de

D
es
cr
ip
tio

n

E0
1

ก
M

K
o
K
ai

E1
7

ท
L

T
ho

T
ha

ha
n

E2
D

อ
M

O
A
ng

E4
7

·
็

V
M
ai
ta
ik
hu

E0
2

ข
H

K
ho

K
ha

i
E1

8
ธ

L
T
ho

T
ho

ng
E2

E
ฮ

L
H
o
N
ok

hu
k

E4
8

·
่

T
M
ai
ek

E0
3

ฃ
H

K
ho

K
hu

at
E1

9
น

L
N
o
N
u

E2
F

ฯ
L

Pa
iy
an

no
i

E4
9

·
้

T
M
ai
th
o

E0
4

ค
L

K
ho

K
hw

ai
E1

A
บ

M
Bo

Ba
im

ai
E3

0
ะ

v
Sa

ra
A

E4
A

·
๊

T
M
ai
tr
i

E0
5

ฅ
L

K
ho

K
ho

n
E1

B
ป

M
Po

Pl
a

E3
1

·
ั

V
M
ai
ha

na
ka

t
E4

B
·

๋
T

M
ai
ch
at
ta
wa

E0
6

ฆ
L

K
ho

R
ak

ha
ng

E1
C

ผ
H

Ph
o
Ph

un
g

E3
2

า
V

Sa
ra

A
a

E4
C

·
์

S
T
ha

nt
ha

kh
at

E0
7

ง
L

N
go

N
gu

E1
D

ฝ
H

Fo
Fa

E3
3

·
ำ

V
Sa

ra
A
m

E4
D

·
ํ

V
N
ik
ha

hi
t

E0
8

จ
M

C
ho

C
ha

n
E1

E
พ

L
Ph

o
Ph

an
E3

4
·

ิ
v

Sa
ra

I
E4

E
·

๎
V

Ya
m
ak

ka
n

E0
9

ฉ
H

C
ho

C
hi
ng

E1
F

ฟ
L

Fo
Fa

n
E3

5
·

ี
V

Sa
ra

Ii
E4

F
๏

S
Fo

ng
m
an

E0
A

ช
L

C
ho

C
ha

ng
E2

0
ภ

L
Ph

o
Sa

m
ph

ao
E3

6
·

ึ
v

Sa
ra

U
e

E5
0

๐
D

Ze
ro

E0
B

ซ
L

So
So

E2
1

ม
L

M
o
M
a

E3
7

·
ื

V
Sa

ra
U
ee

E5
1

๑
D

O
ne

E0
C

ฌ
L

C
ho

C
ho

e
E2

2
ย

L
Yo

Ya
k

E3
8

·
ุ

v
Sa

ra
U

E5
2

๒
D

Tw
o

E0
D

ญ
L

Yo
Y
in
g

E2
3

ร
L

R
o
R
ua

E3
9

·
ู

V
Sa

ra
U
u

E5
3

๓
D

T
hr
ee

E0
E

ฎ
M

D
o
C
ha

da
E2

4
ฤ

L
R
u

E3
A

·
ฺ

V
Ph

in
th
u

E5
4

๔
D

Fo
ur

E0
F

ฏ
M

To
Pa

ta
k

E2
5

ล
L

Lo
Li
ng

E3
F

฿
S

Ba
ht

E5
5

๕
D

Fi
ve

E1
0

ฐ
H

T
ho

T
ha

n
E2

6
ฦ

L
Lu

E4
0

เ
v

E
E5

6
๖

D
Si
x

E1
1

ฑ
L

T
ho

N
an

gm
on

th
o

E2
7

ว
L

W
o
W
ae
n

E4
1

แ
V

A
e

E5
7

๗
D

Se
ve
n

E1
2

ฒ
L

T
ho

Ph
ut
ha

o
E2

8
ศ

L
So

Sa
la

E4
2

โ
V

O
E5

8
๘

D
Ei
gh

t
E1

3
ณ

L
N
o
N
en

E2
9

ษ
H

So
R
us
i

E4
3

ใ
V

A
iM

ai
m
ua

n
E5

9
๙

D
N
in
e

E1
4

ด
M

D
o
D
ek

E2
A

ส
H

So
Su

a
E4

4
ไ

V
A
iM

ai
m
al
ai

E5
A

๚
L

A
ng

kh
an

kh
u

E1
5

ต
M

To
Ta

o
E2

B
ห

H
H
o
H
ip

E4
5

ๅ
V

La
kk

ha
ng

ya
o

E5
B

๛
L

K
ho

m
ut

E1
6

ถ
H

T
ho

T
hu

ng
E2

C
ฬ

L
Lo

C
hu

la
E4

6
ๆ

V
M
ai
ya
m
ok

K
ey

:
L:

lo
w

cl
as
s
le
tt
er
;M

:m
id

cl
as
s
le
tt
er
;H

:h
ig
h
cl
as
s
le
tt
er
;V

:v
ow

el
;T

:t
on

e;
S:

sy
m
bo

l;
D
:d

ig
it

APPENDIX A. THE THAI AND LAO SCRIPTS 127

Ta
bl

e
A

.3
:

T
he

La
o

C
ha

ra
ct

er
Se

t
U

ni
co

de
D

es
cr

ip
tio

n
U

ni
co

de
D

es
cr

ip
tio

n
U

ni
co

de
D

es
cr

ip
tio

n
U

ni
co

de
D

es
cr

ip
tio

n

E8
1

ກ
L

K
o

E9
9

ນ
L

N
o

EB
1

·
ັ

V
M

ai
K

an
EC

8
·
່

T
M

ai
Ek

E8
2

ຂ
L

K
ho

Su
ng

E9
A

ບ
L

Bo
EB

2
າ

V
A

a
EC

9
·
້

T
M

ai
T

ho
E8

4
ຄ

L
K

ho
Ta

m
E9

B
ປ

L
Po

EB
3

ຳa
V

A
m

EC
A

·
໊

T
M

ai
T

i
E8

7
ງ

L
N

go
E9

C
ຜ

L
Ph

o
Su

ng
EB

4
·
ິ

V
I

EC
B

·
໋

T
M

ai
C

at
aw

a
E8

8
ຈ

L
C

o
E9

D
ຝ

L
Fo

Ta
m

EB
5

·
ີ

V
Ii

EC
C

·
໌

S
C

an
ce

lla
tio

n
E8

A
ຊ

L
So

Ta
m

E9
E

ພ
L

Ph
o

Ta
m

EB
6

·
ຶ

V
Y

EC
D

·
ໍ

S
N

ig
ga

hi
ta

E8
D

ຍ
L

N
yo

E9
F

ຟ
L

Fo
Su

ng
EB

7
·
ື

V
Y

y
ED

0
໐

D
Ze

ro
E9

4
ດ

L
D

o
EA

1
ມ

L
M

o
EB

8
·
ຸ

V
U

ED
1

໑
D

O
ne

E9
5

ຕ
L

To
EA

2
ຢ

L
Yo

EB
9

·
ູ

V
U

u
ED

2
໒

D
Tw

o
E9

6
ຖ

L
T

ho
Su

ng
EA

3
ຣ

L
Lo

Li
ng

EB
B

·
ົ

V
M

ai
K

on
ED

3
໓

D
T

hr
ee

E9
7

ທ
L

T
ho

Ta
m

EA
5

ລ
L

Lo
Lo

ot
EB

C
·
ຼ

V
Lo

ED
4

໔
D

Fo
ur

E8
8

ຈ
L

C
o

EA
7

ວ
L

W
o

EB
D

ຽ
V

N
yo

ED
5

໕
D

Fi
ve

E8
A

ຊ
L

So
Ta

m
EA

A
ສ

L
So

Su
ng

EC
0

ເ
V

E
ED

6
໖

D
Si

x
E8

D
ຍ

L
N

yo
EA

B
ຫ

L
H

o
Su

ng
EC

1
ແ

V
Ei

ED
7

໗
D

Se
ve

n
E9

4
ດ

L
D

o
EA

D
ອ

L
O

EC
2

ໂ
V

O
ED

8
໘

D
Ei

gh
t

E9
5

ຕ
L

To
EA

E
ຮ

L
H

o
Ta

m
EC

3
ໃ

V
Ay

ED
9

໙
D

N
in

e
E9

6
ຖ

L
T

ho
Su

ng
EA

F
ຯ

S
El

lip
sis

EC
4

ໄ
V

A
i

ED
C

ໜ
L

H
o

N
o

E9
7

ທ
L

T
ho

Ta
m

EB
0

ະ
V

A
EC

6
ໆ

S
K

o
La

ED
D

ໝ
L

H
o

M
o

K
ey

:
L:

lo
w

cl
as
s
le
tt
er
;M

:m
id

cl
as
s
le
tt
er
;H

:h
ig
h
cl
as
s
le
tt
er
;V

:v
ow

el
;T

:t
on

e;
S:

sy
m
bo

l;
D
:d

ig
it

APPENDIX B

Source file samples

Figures B.1 to B.5 contain text samples taken from the corresponding source files used

to publish the Iu Mien translation of the Bible. The content of this text represents

the introduction and first 5 verses of the Iu Mien translation of the Bible portion

known as Third Letter of John and referenced as 3Jn 1-5. As seen in the following

pages, the source text files contained both the Iu Mien text and the corresponding

text object markers as per the United Bible Societies Asia-Pacific Regional Standard

Format Code.[46]

In the standard formating used, each marker was assigned symbols mnemonically

to identify the role of subsequent text. In this way, text elements are marked for

automated processing and typesetting under TEX. The text of the main title and sub

titles follow the format markers \mt and \st. In these examples, there is also support

for section and sub-section headings (\s and \ss), chapter and verse milestones (\c

and \v), start of paragraph and levels of stanzas (\p and \q1, \q2, \q3, etc). Special

characters style changes to identify a book title (\bt) or the resumption of normal

text (\tx). The contents of introductory and tabular environments were marked by

their respective sets of delimiters, (ie \ib ... \ie and \tb ... \te).

128

APPENDIX B. SOURCE FILE SAMPLES 129

\id 3JN 3jn01 YAO, 9-2-89, Aspray, Thailand
\h 3 [yo-han]
\ib
\mt 3 [yo-han]
\st [yo-han fiaq Eei ta'faam zeiq fyenj]
\s [piuj mevb waag]
\p
\bt [yo-han fiaq Eei ta'faam zeiq fyenj]
\tx [yo-han] fiaq pun taub txb Jiu= paav Eei myenb, Buaj heug [kaai-atg].
[yo-han] fiaq Zev [kaai-atg] weig zu'g [kaai-atg] Hruq lovj, a'Neiq zipq
syenj [ye-su] Eei myenb. fyenj yaag Buaj [kaai-atg] xij zu'g faij fim
Buvb Jyenq taub myenb, Buaj heug [Di-o-te-fetq].
\tb2
\th [fyenj kxvq] &\bl 1-4 & [Jiad] kxn waag\bl
5-8 & [Zev kaai-atg] Eei waag\bl 9-10 & [Gemb Di-o-te-fetq]\bl
11-12 & [Zev De-metq-li-atg]\bl 13-15 & [setq] mweid waag\bl
\te
\ie
\c 0
\p
\v 1 [yia], Jiu= paav Eei myenb koj, fiaq fyenj pun Zyen Namq Eei
[kaai-atg].\x 1 *[kov= zob] 19:29; [lo-maa] 16:23; 1 [Ko-lin-To] 1:14*
yia zyen=~zyen Namq meib.
\p
\v 2 Namq Eei lod= kcv aa'b! yia Toq [Tin= huvb] pun meib zruj haiq
Euvg yaag hcvb wavg cvj pun meib wavg syavj, Navq yia hiuq
tu'q meib Eei livb wrnb wavg syavj nx.
\v 3 yia a'Neiq haig maaib teij kxj= yrud taaib naaiq Buaj yia,
meib zyepg zua'q Eei kan zyen leid, haiq zang yaag ei Jyenq
zyen leid zruj.
\v 4 maiq maaib haiq Euvg pun yia kaub Fyen= yrub Jiaj naaiq
a'q! se yia haid myenb kxvq yia Eei fu'Jweiq zang=~zang kan
lovj zyen leid.
\s [Zev kaai-atg zipq Kc'q lovj]
\p
\v 5 [Namq] Eei lod= kcv aag, meib za'kevb Tevj tu'q syenj [ye-su]
Eei kxj= yrud lovj haig. maiq kunq maiq pwatg Jiaj Eei myenb,
meib yaag lovg Hruq Tevj ninb Bua.

Figure B.1: Source text in the Generic script: (3Jn 1-5)

APPENDIX B. SOURCE FILE SAMPLES 130

\id 3JN 3jn01 YAO, 9-2-89, Aspray, Thailand
\h 3 yo-han
\ib
\mt 3 yo-han
\st yo-han fiaq Eei ta'faam zeiq fyenj
\s piuj mevb waag
\p
\bt yo-han fiaq Eei ta'faam zeiq fyenj
\tx yo-han fiaq pun taub txb Jiub paav Eei myenb, Buaj heug kaai-atg.
yo-han fiaq Zev kaai-atg weig zu'g kaai-atg Hruq lovj, a'Neiq zipq
syenj ye-su Eei myenb. fyenj yaag Buaj kaai-atg xij zu'g faij fim
Buvb Jyenq taub myenb, Buaj heug Di-o-te-fetq.
\tb2
\th fyenj kxvq &\bl 1-4 & Jiad kxn waag\bl
5-8 & Zev kaai-atg Eei waag\bl 9-10 & Gemb Di-o-te-fetq\bl
11-12 & Zev De-metq-li-atg\bl 13-15 & setq mweid waag\bl
\te
\ie
\c 1
\p
\v 1 yia, Jiub paav Eei myenb koj, fiaq fyenj pun Zyen Namq Eei
kaai-atg.\x 1 *kovb zob 19:29; lo-maa 16:23; 1 Ko-lin-To 1:14*
yia zyenb zyen Namq meib.
\p
\v 2 Namq Eei lob kcv aa'b! yia Toq Tinb huvb pun meib zruj haiq
Euvg yaag hcvb wavg cvj pun meib wavg syavj, Navq yia hiuq
tu'q meib Eei livb wrnb wavg syavj nx.
\v 3 yia a'Neiq haig maaib teij kxb yrud taaib naaiq Buaj yia,
meib zyepg zua'q Eei kan zyen leid, haiq zang yaag ei Jyenq
zyen leid zruj.
\v 4 maiq maaib haiq Euvg pun yia kaub Fyenb yrub Jiaj naaiq
a'q! se yia haid myenb kxvq yia Eei fu'Jweiq zanb zang kan
lovj zyen leid.
\s Zev kaai-atg zipq Kc'q lovj
\p
\v 5 Namq Eei lob kcv aag, meib za'kevb Tevj tu'q syenj ye-su
Eei kxb yrud lovj haig. maiq kunq maiq pwatg Jiaj Eei myenb,
meib yaag lovg Hruq Tevj ninb Bua.

Figure B.2: Source text in Old Roman script: (3n 1-5)

APPENDIX B. SOURCE FILE SAMPLES 131

\id 3JN 3jn01 YAO, 9-2-89, Aspray, Thailand

\h 3 Yo^han
\ib
\mt 3 Yo^han
\st Yo^han Fiev Nyei Da'faam Zeiv Fienx
\s Biux Mengh Waac
\p
\bt Yo^han Fiev Nyei Da'faam Zeiv Fienx
\tx Yo^han fiev bun dauh dorh jiu-baang nyei mienh, mbuox heuc Gaai^atc.
Yo^han fiev ceng Gaai^atc weic zuqc Gaai^atc hnyouv longx, a'hneiv zipv
sienx Yesu nyei mienh. Fienx yaac mbuox Gaai^atc oix zuqc faix fim
mbungh jienv dauh mienh, mbuox heuc Ndi^o^de^fetv.
\tb2
\th Fienx Gorngv &\bl 1-4 & Jiez gorn waac\bl
5-8 & Ceng Gaai^atc nyei waac\bl 9-10 & Nqemh Ndi^o^de^fetv\bl
11-12 & Ceng Nde^metv^li^atc\bl 13-15 & Setv mueiz waac\bl
\te
\ie
\c 1
\p
\v 1 Yie, jiu-baang nyei mienh gox, fiev fienx
bun cien hnamv nyei
Gaai^atc.\x 1 *Gong-Zoh 19:29; Lomaa 16:23; 1 Ko^lin^to 1:14*
Yie zien-zien hnamv meih.
\p
\v 2 Hnamv nyei loz-gaeng aah! Yie tov Tin-Hungh bun meih zoux haaix
nyungc yaac haengh wangc aengx bun meih wangc siangx, hnangv yie hiuv
duqv meih nyei lingh wuonh wangc siangx nor.
\v 3 Yie a'hneiv haic maaih deix gorx-youz daaih naaiv mbuox yie,
meih ziepc zuoqv nyei gan zien leiz, haaix zanc yaac ei jienv
zien leiz zoux.
\v 4 Maiv maaih haaix nyungc bun yie gauh njien-youh jiex naaiv
aqv! Se yie haiz mienh gorngv yie nyei fu'jueiv zanc-zanc gan
longx zien leiz.
\s Ceng Gaai^atc Zipv Kaeqv Longx
\p
\v 5 Hnamv nyei loz-gaeng aac, meih za'gengh tengx duqv sienx Yesu
nyei gorx-youz longx haic. Maiv gunv maiv buatc jiex nyei mienh,
meih yaac longc hnyouv tengx ninh mbuo.

Figure B.3: Source text in New Roman script: (3Jn 1-5)

APPENDIX B. SOURCE FILE SAMPLES 132

\id 3JN 3jn01 YAO, 9-2-89, Aspray, Thailand
\h 3 โย^ฮัน
\ib
\mt 3 โย^ฮัน
\st โย^ฮัน เฟี้ย เญย ตะฟาม เฒ้ย เฝียน
\s ปิ๋ว เม่ง หว่า
\p
\bt โย^ฮัน เฟี้ย เญย ตะฟาม เฒ้ย เฝียน
\tx โย^ฮัน เฟี้ย ปุน เต้า ต้อ จิว-ปาง เญย เมี่ยน, บั๋ว เห่ว กาย^อัด.
โย^ฮนั เฟีย้ เธง กาย^อดั เหวย่ หฒุ กาย^อดั เฮญีย้ว หลง, อะเฮน้ย ฒิบ
เสียน เย^ซู\gb เญย เมี่ยน. เฝียน หย่า บั๋ว กาย^อัด อ๋อย หฒุ ไฝ ฟิม
บู้ง เจี๊ยน เต้า เมี่ยน, บั๋ว เห่ว ดี̂ โอ^เต^เฟ้ด.
\tb2
\th เฝียน ก๊อง &\bl 1-4 & เจี์ย กอน หว่า\bl
5-8 & เธง กาย^อัด เญย หว่า\bl 9-10 & เฆ่ม ดี^โอ^เต^เฟ้ด\bl
11-12 & เธง เด^เม้ด^ลิ^อัด\bl 13-15 & เซ้ด เมว์ย หว่า\bl
\te
\ie
\c 1
\p
\v 1 เยีย, จิว-ปาง เญย เมี่ยน โก๋, เฟี้ย เฝียน
ปุน เธียน ฮนั้ม เญย
กาย^อัด.\x 1 *กง-โฒ่ 19:29; โล^มา 16:23; 1 โค^ลิน^โท 1:14*
เยีย เฒียนๆ ฮนั้ม เม่ย.
\p
\v 2 ฮนั้ม เญย โล์-แกง อ้า! เยีย โท้ ทิน-ฮู่ง ปุน เม่ย โหฒว หาย
หญู่ง หย่า แฮ่ง หวั่ง แอ๋ง ปุน เม่ย หวั่ง เสียง,\ths ฮนั้ง เยีย ฮิ้ว
ตุ๊ เม่ย เญย ลี่ง ว่วน หวั่ง เสียง นอ.
\v 3 เยีย อะเฮน้ย ไห\่gb ม่าย เต๋ย ก๋อ-โย์ว ต้าย น้าย บั๋ว เยีย,
เม่ย เหฒียบ ฒัวะ เญย กัน เฒียน เล์ย, หาย หฒั่น หย่า เอย เจี๊ยน
เฒียน เล์ย โหฒว.
\v 4 ไม้ ม่าย หาย หญู่ง ปุน เยีย เก้า เฌียน-โย่ว เจี๋ย น้าย
อ๊ะ! เซ เยีย ไฮ์ เมี่ยน ก๊อง เยีย เญย ฝุเจว๊ย หฒั่นๆ กัน
หลง เฒียน เล์ย.
\s เธง กาย^อัด ฒิบ แคะ หลง
\p
\v 5 ฮนั้ม เญย โล์-แกง อ่า, เม่ย หฒะเก้ง เถง ตุ๊ เสียน เย^ซู
เญย ก๋อ-โย์ว หลง ไห่. ไม้ กุ๊น ไม้ ปวัด เจี๋ย เญย เมี่ยน,
เม่ย หย่า หล่ง เฮญี้ยว เถง นิ่น บัว.

Figure B.4: Source text in Thai script: (3Jn 1-5)

APPENDIX B. SOURCE FILE SAMPLES 133

\id 3JN 3jn01 YAO, 9-2-89, Aspray, Thailand
\h ໂຢˆຮັaນ
\ib
\mt 3 ໂຢˆຮັaນ
\st ໂຢˆຮັaນ ເຟຍ ເຍີຍ ຕະຟາມ ເຕສີ໊ຍ ຝຽນ
\s ປິ໋ວ ເມງ າ
\p
\bt ໂຢˆຮັaນ ເຟຍ ເຍີຍ ຕະຟາມ ເຕສີ໊ຍ ຝຽນ
\tx ໂຢˆຮັaນ ເຟຍ ປຸນ ເຕາ ຕ ຈິວ-ປາງ ເຍີຍ ມຽນ, ບົa໋ວ ເຫວ ກາຍˆອັaດ.
ໂຢˆຮັaນ ເຟຍ ເທສງ ກາຍˆອັaດ ເ ຍ ຕສຸ ກາຍˆອັaດ ໂຮຍວ ົaງ, ອະເຮນຍ ຕສິ໊ບ
ສຽນ ເຢˆຊູ ເຍີຍ ມຽນ. ຝຽນ ຢາ ບົa໋ວ ກາຍˆອັaດ ອອຍ ຕສຸ ໄຝ ຟິມ
ບູງ ຈຽນ ເຕາ ມຽນ, ບົa໋ວ ເຫວ ດີˆໂອˆເຕˆເຟດ.
\tb2
\th ຝຽນ ກອງ & \bl 1-4 & ເຈຍ ກອນ າ \bl
5-8 & ເທສງ ກາຍˆອັaດ ເຍີຍ າ \bl 9-10 & ເອກມ ດີˆໂອˆເຕˆເຟດ \bl
11-12 & ເທສງ ເດˆເມດˆລິˆອັaດ\bl 13-15 & ເຊດ ເມວີ໌ຍ າ\bl
\te
\ie
\c 1
\p
\v 1 ເຢຍ, ຈິວ-ປາງ ເຍີຍ ມຽນ ໂກ, ເຟຍ ຝຽນ ປຸນ ທສຽນ ຮນa ເຍີຍ ກາຍˆອັaດ.
\x 1 *ກົaງ-ໂຕສ 19:29; ໂລˆມາ 16:23; 1 ໂຄˆລິນˆໂທ 1:14*
ເຢຍ ຕສຽນໆ ຮນa ເມຍ.
\p
\v 2 ຮນa ເຍີຍ ໂລ-ແກງ ອາ! ເຢຍ ໂທ ທິນ-ຮູງ ປຸນ ເມຍ ໂຕສວ ຫາຍ

ູງ ຢາ ແຮງ aງ ແອງ ປຸນ ເມຍ aງ ສຢັaງ, ຮນaງ ເຢຍ ຮວ
ຕຸ ເມຍ ເຍີຍ ລງ ວວນ aງ ສຢັaງ ນໍ.
\v 3 ເຢຍ ອະເຮນຍ ໄຫ ມາຍ ເຕີ໋ຍ ກໍ໋-ໂຢວ ຕາຍ ນາຍ ບົa໋ວ ເຢຍ,
ເມຍ ຕສຽບ ຕສົa໊ວະ ເຍີຍ ກັaນ ຕສຽນ ເລີ໌ຍ, ຫາຍ ຕສaນ ຢາ ເອີຍ ຈຽນ
ຕສຽນ ເລີ໌ຍ ໂຕສວ.
\v 4 ໄມ ມາຍ ຫາຍ ູງ ປຸນ ເຢຍ ເກາ ອຈຽນ-ໂຢວ ເຈຍ ນາຍ
ອະ! ເຊ ເຢຍ ໄຮ ມຽນ ກອງ ເຢຍ ເຍີຍ ຝຸຈວຍ ຕສaນໆ ກັaນ ົaງ ຕສຽນ ເລີ໌ຍ.
\s ເທສງ ກາຍˆອັaດ ຕສິ໊ບ ແຄະ ົaງ
\p
\v 5 ຮນa ເຍີຍ ໂລ-ແກງ ອາ, ເມຍ ຕສະເກງ ເຖງ ຕຸ ສຽນ ເຢˆຊູ
ເຍີຍ ກໍ໋-ໂຢວ ົaງ ໄຫ. ໄມ ກຸນ ໄມ ປວັaດ ເຈຍ ເຍີຍ ມຽນ,
ເມຍ ຢາ aງ ໂຮຍວ ເຖງ ນນ ບົaວ.

Figure B.5: Source text in Lao script: (3Jn 1-5)

APPENDIX C

Website behavoir specifications

The following sections contain the behavorial specifications for the various features

of the simplified online transcription service hosted on Heroku in August 2011.1

C.1 Splash page

Feature: a slash screen
As a user I want to be assured that
the site is an open service that I am
authorized to use.

Scenario: Link on splash page
When I have requested the home page
Then I will see the splash page
And I will see a link to the text submission page

Code Frag. C.1: Behavior of the splash page

1This is the third revision of the website hosted at http://mien.heroku.com.

134

APPENDIX C. WEBSITE BEHAVOIR SPECIFICATIONS 135

C.2 Text submission

Feature: Text submission
As a user I want to be able to submit Iu Mien text
for transcription into 4 scripts.

Scenario: Forgotten text
Given I have a copy of the submit text form
When I have clicked on the submit text button
And I am missing the text sample
Then I will see an error message
And I will see the submit text form

Scenario: Forgotten script id
Given I have a copy of the submit text form
When I have clicked on the submit text button
And I am missing a valid script id
Then I will see an error message
And I will see the submit text form

Scenario: Completed text submission form
Given I have a copy of the submit text form
When I have supplied the script id
And I have supplied the text sample
And I have clicked on the submit text button
Then I will see the results page

Code Frag. C.2: Behavior of the text submission page

APPENDIX C. WEBSITE BEHAVOIR SPECIFICATIONS 136

C.3 Results page

Feature: User results
As a user I want to be able to view the
results of autotranscription

Scenario: The text cannot be parsed
Given I have a copy of the submit text form
And I have supplied the script id
And I have supplied the wierd text
When I have clicked on the submit text button
Then I will see the results page
And I will see an error message in the parsed text

Scenario: The text cannot be parsed
Given I have a copy of the submit text form
And I have supplied the script id
And I have supplied the wierd text
When I have clicked on the submit text button
Then I will see the results page
And I will see transcribed versions

Code Frag. C.3: Behavior of the text results

Bibliography

[1] Eugene Peterson. The Message: The Bible in Contemporary Language. NavPress,
Colorado Springs, CO, 2002.

[2] Thailand Bible Society. Iu Mien Bible in Old Roman Script. Thailand Bible
Society, Bangkok, Thailand, 2007.

[3] Thailand Bible Society. Iu Mien Bible in New Roman Script. Thailand Bible
Society, Bangkok, Thailand, 2007.

[4] Thailand Bible Society. Iu Mien Bible in Thai Script. Thailand Bible Society,
Bangkok, Thailand, 2007.

[5] Thailand Bible Society. Iu Mien Bible in Lao Script. Thailand Bible Society,
Bangkok, Thailand, 2007.

[6] Richard Sproat. A Computational Theory of Writing Systems. Cambridge Uni-
versity Press, 2000.

[7] Krisana Charoenwong. The Nationalist Chinese (Kuomintang) Troops in North-
ern Thailand: a study on the political, economic and social effects of their re-
settlement, 1945-1980’s. PhD thesis, Faculty of Social Sciences and Humanities,
National University of Malaysia, Bangi, 1999.

[8] Robert N. Kearney and Clark D. Neher. Politics and Moderization in South and
Southeast Asia. John Wiley and Sons, New York, 1975.

[9] John L. S. Girling. Thailand: Society and Politics. Cornell University Press,
Ithaca, NY, 1981.

[10] Robert P. Batzinger. The Computer-Assisted Text Processing Needs of Asia-
Pacific. Technical report, United Bible Societies CATP Center, Chiang Mai,
Thailand, 1988.

[11] Helen Abadzi. Strategies and policies for literacy. Report of the World Bank,
Operations Evaluation Department. The electronic copy available at http://
portal.unesco.org/education, March 2006.

137

BIBLIOGRAPHY 138

[12] L. Ehri. Learning to read words: Theory, findings, and issues. Scientific Studies
of Reading, 9:167–188, 2005.

[13] A. Holm and B. Dodd. The effect of first written language on the acquisition of
english literacy. Cognition, 59:119–147, 1996.

[14] N. Akamatsu. The effects of first language orthographic features on second
language reading in text. Language Learning, 2003.

[15] M. O’Connor. The alphabet as a technology. In Peter T. Daniels and William
Bright, editors, The world’s writing systems, pages 141–159. Oxford University
Press, 1996.

[16] Raymond G. Gordon, Jr., editor. Ethnologue: Languages of the World. SIL
International, Dallas, TX, fifteenth edition, 2005.

[17] Peter T. Daniels. Methods of decipherment. In Peter T. Daniels and William
Bright, editors, The world’s writing systems, pages 141–159. Oxford University
Press, New York, 1996.

[18] I. Dan Melamed. Empirical Methods for Exploiting Parallel Texts. MIT Press,
Cambridge, MA, 2001.

[19] Stefan Wermter, Ellen Riloff, and Gabriele Scheler. Learning approaches for nat-
ural language processing. In Connectionist, Statistical, and Symbolic Approaches
to Learning for Natural Language Processing, pages 1–16, London, UK, 1996.
Springer-Verlag.

[20] Vasileios Hatzivassiloglou. Do we need linguistics when we have statistics? a
comparative analysis of the contributions of linguistic cues to a statistical word
grouping system. In Judith L. Klavans and Philip S. Resnik, editors, The Bal-
ancing Act: Combining Symbolic and Statistical Approaches to Language, pages
67–94. MIT Press, Cambridge, Massachusetts, 1996.

[21] Steven A. Jacobson. Yup’ik Eskimo Dictionary. University of Alaska Press,
Fairbanks, AK, 1984.

[22] Carolyn Penstein Rosé and Alex H. Waibel. Recovering from parser failures: A
hybrid statistical and symbolic approach. In Judith L. Klavans and Philip S.
Resnik, editors, The Balancing Act: Combining Symbolic and Statistical Ap-
proaches to Language, pages 157–179. MIT Press, Cambridge, Massachusetts,
1996.

BIBLIOGRAPHY 139

[23] Random House, editor. Random House Webster’s Unabridged Dictionary. Ran-
dom House, second edition, 2005.

[24] Andreea Cervatiuc. Esl vocabulary acquisition: Target and approach. The In-
ternet TESL Journal (http://iteslj.org/), XIV(1), Jan 2008.

[25] Mark Davies. The corpus of contemporary american english (coca): 425 million
words, 1990-present. Available online at http://corpus.byu.edu/, 2008.

[26] M. Paul Lewis, editor. Ethnologue: Languages of the World. SIL International,
Dallas, TX, sixteenth edition, 2009.

[27] Herbert C. Purnell. Yao-English Dictionary. Department of Asian Studies,
Cornell University, Ithaca, NY, 1968.

[28] Mary R. Haas. Book review of yao-english dictionary compiled by sylvia j lom-
bard and edited by herbert c. purnell, jr. American Anthropologist, 71:367–368,
1969.

[29] Donald E. Knuth. Backus normal form vs. backus naur form. Communications
of the ACM, 7(12):735–736, 1964.

[30] Ann Burgess, editor. Mien Hymnbook: Old Roman Script Edition. O.M.F.,
Bangkok, Thailand, 1989.

[31] Ann Burgess, editor. Mien Hymnbook: New Roman Script Edition. O.M.F.,
Bangkok, Thailand, 1989.

[32] Ann Burgess, editor. Mien Hymnbook: Thai Script Edition. O.M.F., Bangkok,
Thailand, 1989.

[33] John Ross Quinlan. Induction of decision trees. Machine Learning, pages 81–106,
Mar 1986.

[34] Paul Werbos. Beyond regression: New tools for prediction and analysis in the
behaviorial sciences. PhD thesis, Committee on Applied Mathematics, Harvard
University, Cambridge, MA, Nov 1974.

[35] Dave Thomas, David Heinemeier Hansson, Leon Breedt, Mike Clark, Thomas
Fuchs, and Andeas Schwarz. Agile Web Deveopment with Rails. The Pragmatic
Bookshelf, Raleigh, NC, 2005.

BIBLIOGRAPHY 140

[36] Michael Swaine. Ruby on rails: Java’s successor. Dr Dobb’s Journal,
32(385):20–28, June 2006.

[37] Donald E. Knuth. Literate programming. The Computer Journal, 27(2):97–111,
1984.

[38] Wayne Sewell. Weaving a Program: Literate Programming in WEB. Van Nos-
trand Reinhold, New York, NY 10003, 1989.

[39] Dave Thomas. Programming Ruby: The Pragmatic Programmers’ Guide. The
Pragmatic Bookshelf, Raleigh, NC, 2005.

[40] Steve Pugh. Wicked cool Ruby scripts : useful scripts that solve difficult problems.
No Starch Press, San Francisco, CA, 2009.

[41] Matt Wynne and Aslak Hellesøy. The Cucumber Book: Behaviour-Driven De-
velopment for Testers and Developers. The Pragmatic Bookshelf, Dallas, TX,
2011.

[42] David Chelimsky, David Astels, Zach Dennis, Aslak Hellesoy, Bryan Helmkamp,
and Dan North. The RSpec Book: Behavior-driven development with RSpec,
Cucumber and Friends. Facets of Ruby. Pragmatic Bookshelf, Raleigh, NC,
2010.

[43] Sergio Fierns and Thomas Kern. Ai4r :: Artificial intelligence for ruby. available
online at http://ai4r.rubyforge.org, 2007.

[44] The Unicode Consortium. The Unicode 4.0 Standard. Addison-Wesley Publishing
Company, Reading, MA, fourth edition, 2004.

[45] The Unicode Consortium. The Unicode 5.0 Standard. Addison-Wesley Publishing
Company, Reading, MA, fifth edition, 2007.

[46] Robert P. Batzinger. Standard Format Marking of Scripture. United Bible
Societies Asia-Pacific Technical Support Office for Computer-Assisted Text Pro-
cessing (UBS-APTSOCAP), Bible House, Singapore, 1992.

[47] George Kingsley Zipf. Human Behavior and the Principle of Least Effort.
Addison-Wesley, Cambridge, MA, 1949.

[48] Erez Lieberman, Jean-Baptiste Michel, Joe Jackson, Tina Tang, and Mar-
tin A. Nowak1. Quantifying the evolutionary dynamics of language. Nature,
449:713–716, July 2007.

BIBLIOGRAPHY 141

[49] Eva Grabowski and Dieter Mindt. Die unregelmäßigen verben des englischen:
eine lernliste auf empirischer grundlage. Die Neueren Sprachen, 93(4):334–353,
1994.

[50] Yukihiro Matsumoto. Ruby in a Nutshell. O’Reilly & Associates, Sebastopol,
CA, 2002.

[51] Anthony Diller. Thai and lao writing. In Peter T. Daniels and William Bright,
editors, The world’s writing systems, pages 457–466. Oxford University Press,
1996.

[52] William A. Smalley. The use of non-roman script for new languages. In
William A. Smalley, editor, Orthography studies: articles on new writing sys-
tems, volume IV of Helps for Translators, pages 71–107. United Bible Societies,
London, UK, 1964.

Vita

Robert Batzinger was born in 1953 in Schenectady, NY and has been
involved in research from a young age. Upon graduation from High School
in 1971, he assisted on the pioneering work in immuno-fluorence in the
New York State Rabies Laboratory as a summer lab assistant. That fall,
he started his studies in analytical organic chemistry at Massachusetts
Institute of Technology and as an undergraduate research assistant, he
participated in the research leading up to the isolation and identification of
aflatoxin. He graduated with a SB in Chemistry after 3 years of study and
then studied parasite pharmacology as a research fellow under Dr. Ernest
Bueding at Johns Hopkins University School of Public Health, graduated
in 1978 with a PhD in Pathobiology. From there, he entered two years
of post-doctoral studies in chemical carcinogenesis under Drs. Elizabeth
and James Miller at the McArdle Laboratories for Cancer Research at
Wisconsin University in Madison. In 1981 he joined Payap University in
Chiang Mai, Thailand as the Acting Dean of the Faculty of Science and
Head of the Faculty of Pharmacy Development Project. During this time,
he started the Department of Computer Science and Office of Information
Technology Services as well as reversed engineered the CP/M operating
system to handle Thai data.

In 1985, he became the Director of the Non-Roman Development
Project for the United Bible Societies (UBS) in Chiang Mai, Thailand
where he developed text processing software to facilitate keyboarding,
editing, and typesetting of Asian language text in non-Roman script. In
1990, the project was moved to a regional facility in Singapore where Dr.
Batzinger became the Director of the UBS Asia-Pacific Technical Support
Office for Computer-Assisted Text Processing that provided technical as-
sistance and training for over 600 translation and publishing projects in
23 countries in the region.

142

In 2003, he moved to the States and joined the IU South Bend In-
formatics as Lab manager in 2004. He also began studies in the Masters
program in Computer Science and Applied Mathematics in 2005. In the
years that followed, Dr. Batzinger was working and studying at IU South
Bend, he also taught Introduction to Web Programming (CSCI A-340)
and Introduction to Object-oriented programming in Ruby (CSCI-A201).
He participated in a department project to introduce Visual Basic to the
Technology Magnet Program at Riley High School. He also provided in-
struction and consultation on both LATEX and XƎLATEX while also assisting
in various research projects within the Department. Dr. Batzinger has
also promoted the inclusion of open source software not only on student
lab builds both in the Computer Science and Informatics Department
Labs but also in the IU-ITS workstations in the open lab workstations
and lecture rooms across campus.

Dr. Batzinger’s professional interests include the use of artificial intelli-
gence in data mining, natural language processing techniques in publishing
support, and applications of web technologies in software engineering.

143

