
 

 

“The Gazelle Adaptive Racing Car Pilot” 

 

 

 

Kholah Albelihi 

Department of Computer and Information Sciences 

Indiana University South Bend 

E-mail Address: kalbelih@iusb.edu 

 

Date: October 2014 

 

 

 

Submitted to the faculty of the  

Indiana University South Bend  

in partial fulfillment of the requirements for the degree of  

 

Master of Science  

in 

 Applied Mathematics and Computer Science 

 

 

 

 

 

 

Advisor 

Dr. Dana Vrajitoru, Ph.D. 

Department of Computer and Information Sciences 

 

 

 

 

 

Committee 

Dr. Yi Cheng, Ph.D. 

Department of Mathematical Sciences 

 

Dr. Hossein Hakimzadeh, Ph.D. 

Department of Computer and Information Science

kalbelih@iusb.edu


I 

 

 

© 2014 

Kholah Albelihi 

All Rights Reserved  



II 

 

Abstract 
 
In this thesis, we developed a car driving system called “Gazelle” for a simulated racing 

competition. For this, we used both procedural methods and learning methods consisting of hill 

climbing and a neural network. We hoped that using neural networks could lead the controller to 

derive more accurate equations for driving the car based on previous data acquired during the 

training process. We also expected that the more the networks are trained, the more precisely they 

would predict the driving information. We also used a Hill Climbing method to refine the learning 

process. 

Keywords: Artificial Neural Network, ANN, NN, TORCS, Simulated Car Racing Championship, 

Gazelle, Opponent Detection, Overtaking, Opponent.   
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1. Introduction 
In this thesis we conduct a study on various methods that can be applied for successfully driving 

a car in a simulated environment in the presence of opponents.  

 

1.1 The Importance of Autonomous Cars 

Nowadays, the interest in developing autonomous vehicles increases day by day with the purpose 

of achieving high levels of safety, performance, sustainability, and enjoyment. Driverless cars are 

ideal to use in crowded areas, on highways, and because they ease the flow of the cars. The 

autonomous cars can also reduce the opportunity of occurring accidents which are usually caused 

by an oncoming car or by people who are crossing the street while the drivers don’t pay attention 

to their presence.  

There are many research centers founded around the world for developing smart systems 

for driverless cars. These automotive research centers are supported by the leading automobile 

companies and universities such as the Center for Automotive Research at Stanford University 

(CARS) [21]. CARS has a network of  more than 80 affiliated industry partners such as Ford Motor 

Company, General Motors, BMW of North America, Mercedes-Benz Research & Development 

North America, Allstate Roadside Services...etc. [21]. The CARS center brings together industrial 

interests and academia by attracting the researchers who have the passion to work on the 

automotive research which is supported by the affiliated industry partners.  

As an attempt to simulate autonomous cars, the simulated racing car competitions have 

arisen recently. This category of computer games involves computational and artificial intelligence 

[14]. The importance of such competitions comes from the fact that they are a perfect environment 

for testing the application of autonomous driving techniques [14]. Thus, simulated racing car 

competitions offer a structure to “test learning, adaptability, evolution and reasoning features of 

algorithms under investigation” [13]. The simulation offers a realistic platform for racing cars in 

real time.  

In this thesis we present an adaptive racing car controller developed within TORCS (The 

Open Racing Car Simulator) [10]. The TORCS system visualizes racing cars with complex 

graphics based on physics principles. The program offers a server which implements the race 

combining multiple cars, and the setup for the user to develop a client for it. A client module that 

can be written by the user [5] supplying the actions of an individual car. The client module that we 

developed for this thesis is called Gazelle. We submitted an early version of the Gazelle controller 

to the TORCS competition that was organized by the Genetic and Evolutionary Computation 

Conference in 2013. 

 

1.2 The TORCS Simulator Environment 

The TORCS (The Open Racing Car Simulator) is a popular racing car simulator written in C++ 

[13]. TORCS is commonly used for academic purposes, because it is similar to the commercial 

racing car games, and it is considered to be a fully customized environment [13]. It has a powerful 

physics engine and a 3D graphics engine; together they enable visualizing the racing cars 

continuously in real time [13]. It also provides the capability to develop and build new controllers 

for cars. The TORCS attracts a wide community of developers and users, and it is the platform for 
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popular competitions which are organized every year as a part of various international conferences 

[5].   

In this environment, each car is controlled by a controller process. The controller can access 

the current state of the car in the race, consisting of information about the track, the car, and the 

opponents [14]. Based on this information the controller makes decisions to modify the following 

control units: 

 the steering wheel with values in the range [-1, +1] for a change in direction: -1 corresponds 

to −45 o while +1 to 45 o; 

 the gas pedal [0, +1] for accelerating; a value of 0 will result in losing the speed;  

 the brake pedal [0, +1] for decelerating; 

 the gearbox with possible values in the set {-1,0,1,2,3,4,5,6} for choosing the gear [5]. 

The system works in a client-server model. The race application is a server, while each car 

controller is a client exchanging information with it in real time. 

 

 
Figure 1: A Screenshot of TORCS during the race 
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As it is shown in Figure 1, the upper screen of TORCS displays the client and its 

information such as the car’s rank, the total time that the car spent from the beginning of the race, 

the best time that has been taken to complete a lapse, and other measurements such as the positions 

of the cars on the track, the fuel, the damage, and the speed.  The lower screen shows the race from 

another angle; this screen displays one of the opponent cars if any of them are present. It also 

displays the statistics of that car, gear levels, and the speed of the car. It also shows the holders of 

the first five ranks.  

The remainder of the thesis is organized in the following way. In Chapter 2 we discuss a 

few previous papers, works, and other materials that are relevant to our controller. In Chapter 3 

we discuss the procedural methods and the learning methods that we have already used and 

developed further to improve the driver algorithm that we started from. Chapter 4 discusses the 

experimentation methodology that we used to evaluate the controller’s performance. 
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2. Literature Review 

The work in this thesis is based on the EPIC controller as presented by Guse and Vrajitoru in [5]. 

EPIC was submitted to the GECCO 2009 competition [16]. In this competition, cars driven by 

code submitted by the competitors run against each other in a race. Beside the car status, the 

controllers are provided with information about the angle with the track’s center line, the free 

distance ahead within 45 degrees of the car direction, and information about close opponents. The 

paper describes a car driver based on two components: determining the target angle for turning in 

each frame, and determining the target speed in the next frame. The controller calculates the target 

angle based on the target direction in an efficient way. It also provides a sharp turn detecting system 

which allows adjusting the target speed for an approaching sharp turn to keep the car inside the 

track. The system also adjusts the target angle if it determines that it might lead the car out of the 

track [5]. EPIC depends on the principle of calculating the free available distance ahead to 

determine the target angle. However, this controller lacks a component to handle opponents, and 

the movement along the track requires more fluency.  So, we started improving the EPIC code to 

achieve these desirable goals. 

Many approaches can be found in the literature for track prediction with the purpose of 

optimizing the performance. Such predictions help the controller to make early decisions on 

adjusting the steering angle and the target speed, in order to keep the car inside the track. Such an 

approach allows the controller to minimize the damage to the vehicle and to reduce the time 

required to complete the race. 

One popular approach of track prediction depends on calculating the distance ahead, such 

as the one used in the EPIC controller.  It calculates the free available distance ahead of the car to 

determine the target angle. Another approach is “the track segmentation”, in which the track is 

divided into pieces and these pieces are classified as pre-defined types of polygons. Then the 

controller reconstructs a full track model from these polygons, as presented in [15]. 

Another controller based on the track segmentation principle is presented by Onieva et al. 

[13]. Their controller was submitted to TORCS Racing Car Competition 2009 [16]. The 

architecture of the controller consists of five simple modules that control gear shifting, steer 

movements, and pedals positions [13]. In addition, the target speed is adjusted by the “TSK fuzzy 

system”. As the authors pointed out, “Fuzzy rule-based systems are considered one of the most 

important applications of the fuzzy set theory suggested by “Zadeh [20]”. When the car is inside 

the track, the target speed is calculated based on certain rules [13]. The most important aspect of 

this work is the opponent modifier. It controls the driving behavior in situations when an opponent 

is nearby by adjusting the steering controller and the braking controller immediately. However, 

this approach doesn’t take into consideration the factor of the opponent’s speed.  In general, this 

paper provides an important contribution for detecting the track mode and handling the opponents 

for autonomous cars.  

Another paper [14], also written by Onieva et al. in 2012, presents a driving controller 

called AUTOPIA for the simulated racing car competition. It provides a full driving architecture 

including six separate main tasks: gear control, pedal control, steering control, stuck situation 

manager, target speed determination, opponent modifier, and learning module [14]. The 

performance of the controller was tested in two efficient ways: it was running over several tracks 

with and without opponents. Several measures of performance were reported, such as participating 
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in international competitions and running the car on several tracks once alone and another time 

with opponents. The controller was submitted as a participant to the 2010 Simulated Racing car 

Competition, in which it won laurels in the end as the authors claimed [14]. The paper provides a 

simple and a powerful architecture especially for the opponent modifier.  It deals with opponents 

in all directions in a simple approach. When an opponent is present within unallowable distances, 

heuristic rule sets are applied for pedal control and steering control [14].  

Furthermore, many learning approaches are presented to find the optimal path the car 

should follow to reduce the time required to complete the race. Finding the optimal path could be 

accomplished by shortening the distance covered by the car and avoiding unnecessary turns.  

“The evolutionary learning approach” is presented in a paper by Kim, Na et al. [7]. It 

presents an optimized algorithm which was used for an autonomous car controller using “self‐
adaptive” evolutionary strategies (SAESs) [7]. Kim, Na et al. developed additional rules and 

parameters to enhance the performance of their previous model, and they applied new learning 

approaches to these rules and parameters [7]. This work is well-experimented and it provides 

learning approaches that are able to derive the parameters used to determine the target speed in an 

efficient and easy to generalize way. Yet, it lacks an opponent handling system.  

Another controller using the evolutionary learning system is presented by Quadflieg et al. 

in [15]. The controller is based on the track segmentation principle. It was submitted to TORCS 

Racing car Competition 2010 [15]. This controller uses a simple evolutionary learning approach 

which enables planning the path ahead for the car [15]. 

More recently, another learning approach which uses hyper-heuristics in a real-valued 

mode in a paper [8] by Kole, M et al. It presents the TORCS-based car system as a real valued 

optimization problem and studies the performance of different methodologies including a set of 

heuristics and their combination controlled by a selection hyper-heuristic framework. The study 

shows that hyper-heuristics perform well in the TORCS environment [8]. 

Artificial neural networks (ANN) are also used as a learning system. The ANN can be 

traced back to 1943 when the neurophysiologist Warren McCulloch and the mathematician Walter 

Pitts developed a simple model for an artificial neural network in order to describe how the brain’s 

neurons might work. Their artificial neural network was designed using electrical circuits [24]. 

Five years later, a paper, written by Donald Hebb, pointed out that the neural paths become 

stronger every time they are used, which is considered an important principle in the human learning 

process [24]. This paper inspired scientists to think that neural networks could learn from examples 

in a similar way.  

In 1959, the first neural networks applied to a real world problem were called "ADALINE" 

and "MADALINE" and were developed by Bernard Widrow and Marcian Hoff from Stanford 

[24]. Later, the reputation of neural networks diminished due to the fact that some computer 

scientists suggested that there is no productivity for developing such neural networks [24]. This 

resulted in a significant elimination of funding and research with artificial neural networks [24]. 

During the late 1970s and early 1980s, a public interest emerged again in the neural 

networks field. In 1982, there was a joint US-Japan conference on Cooperative/Competitive 

Neural Networks [24]. Japan unveiled its fifth generation of neural networks, and US academia 

were worried that the US could be left behind in the neural networks field. Thus, there was more 

funding and more research raised in the field. As a result, within the next four years later, the back-
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propagation neural networks and the hybrid networks with multiple layers were developed [24]. 

Currently, their value is recognized by the computer science community and they have a vast 

number of applications. They seem especially suited for areas related to control, that our project 

belongs to. 

In [12], a controller presented by Mun˜oz, et al. was submitted to the 2010 Simulated 

Racing car Championship. It is “a human-like controller” using neural networks [12]. It adopts the 

principle of track segmentation.  The controller builds a model of the tracks using the neural 

networks to predict the trajectory the car should follow and the target speed [12]. “The neural 

networks are trained with data retrieved from a human player, and are evaluated in a new track” 

[12]. The ANNs are trained to reach the optimal path the car should take to behave similarly to the 

human player. This work shows a satisfying result of predicting the trajectory in new tracks; 

however, the target speed is most likely slower than the human's on the same tracks because of the 

absence of an opponent overtaking component, as the authors mentioned [12]. 

A different controller suggested by Chaudhary and Sharma in [3] generates the optimal 

racing line using artificial neural networks. The controller choses the optimal racing line within a 

scope angle of 15 degrees that gives the maximum possible speed in every point on the path. 

Overall, most of the works succeeded in building either a track prediction system or an 

opponent-handling system. It is challenging to deal with opponents while the car is traveling on a 

specific target angle and at a specific target speed. Sometimes, the presence of opponent requires 

adjusting the steering angle and modifying the speed, either by accelerating or decelerating. Thus, 

most of the papers focus on improving track prediction systems regardless of the presence of the 

opponents. 

On the other hand, there are a few papers discussing the speed prediction, such as [5]. Here, 

the Hill Climbing (HC) learning approach was used in EPIC to find the optimal safe speed the car 

should take to reduce the damage resulting from miscalculated speed [5]. The HC creates the first 

candidate solution and then produces the offspring using “a parameterless search operation”. The 

search operation performs a loop in which the optimal solution at the current time is used to 

produce one child. If this new child is better than its parent, it replaces it. Then, the cycle starts all 

over again [19]. The algorithm does not maintain a search tree: it looks for an appropriate path 

only from the current state to immediate future states. Hill Climbing is widely used in networking 

and communication, robotics, data mining and data analysis, and developing behaviors for game 

players [19]. 

We will compare our model with both the EPIC controller described earlier in this section, 

and with a Simple Driver controller provided by the TORCS engine as part of the client code. The 

Simple Driver is a very simple controller providing basic modules for steering control and 

accelerating/brake control. It keeps the car in the middle of the track as much as possible, and it 

applies a simple recovery policy if the car is stuck. 
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3. Auto Pilot Methods  
In this chapter, we will discuss in more detail the procedural and learning methods that we used to 

improve the EPIC algorithm that this research is based on. In the procedural methods, we will 

describe the units that we added to enhance the performance of the Gazelle driver. As part of the 

discussion of the learning methods, we will describe some algorithms that we used to improve the 

procedural driver automatically. 

 

3.1 Benchmark Pilots 

For a valid evaluation of the Gazelle’s performance, we need similar controllers to Gazelle to 

compare our various models with them. We chose two pilots that were available to us together 

with the source code: the Simple Driver and the EPIC controller.  

 

1. The Simple Driver 

This pilot was provided by the TORCS software, and it was developed  by Daniele Loiacono in 

2007 [10]. It contains very basic functions to control the racing car to give the developers an idea 

of what the controller should look like. It contains simple functions to control the gear, steering 

angle, and the speed without dealing with opponents. Here are the principles of car driving in this 

system.  

If the car is found at an angle with the road axis that is greater than 30 degrees for at least 

25 consecutive frames, then it is considered to be "stuck". In this case, the simple driver sets the 

car in reverse with an angle that is the negative of the current angle with the road. It drives the car 

this way at a low speed until the car's front is oriented towards the border of the road. For example, 

if the car is on the left side, then it should be facing left. At that point, the car is shifted into first 

gear and the steering angle is reversed, so that the car can start moving forward again. Both the 

EPIC driver and the Gazelle are using this algorithm to deal with stuck situations. 

If the car is not stuck, then the Simple driver proceeds the following way: 

First, it computes the target speed. For this, it gets the distance ahead along the car's axis from the 

sensors (labeled cSensor), then at 5 degrees to the left (lSensor), and at 5 degrees to the right 

(rSensor), as shown in Figure 2. Let's assume that rSensor > cSensor. Then the driver first makes 

an estimation of the "turnAngle" which is the angle between the tangent to the road in the point 

that the car is oriented towards  and the direction of movement plus 5 degrees. If lSensor < cSensor, 

the angle is taken based on the direction of movement minus 5 degrees. Then the target speed is 

computed as: 

targetSpeed = [maxSpeed * cSensor * sin(turnAngle) ] / maxSpeedDist 

where:  

maxSpeed = 150km/h and maxSpeedDist = 70 m. 
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Figure 2: Determining the speed in the Simple Driver 

 

Second, it computes the target angle for steering the car by simply aiming to keep the car 

parallel to the track axis and close to the center of the road. At high speed, this driver reduces the 

steering command to avoid loosing control of the car. 

In addition to these, the Simple Driver also provides some functions for changing the gear 

and for converting a target angle or speed into the correct value for the steering and acceleration. 

These were used both EPIC and Gazelle.  

 

2. EPIC 

This autonomous driver that was used as a starting point for writing Gazelle, and was developed 

by Dana Vrajitoru and Charles Guse [5]. EPIC was submitted to the GECCO 2009 competition 

[16]. This pilot has the next properties: 

The general algorithm of EPIC consists in the following steps:  

 calculate the target direction and speed, 

 determine the correct gear, 

 calculate the target angle based on the target direction, 

 calculate the acceleration and the brake based on the target angle and speed [5]. 

First, for the target direction, EPIC starts by deciding if the car can continue to travel in the 

current direction. The conditions for persisting in the same direction are: 

 if the current direction of the car is close enough to the direction of the road centerline, 

 if there is enough free distance straight ahead in the car’s direction of movement, 

 if the car is safely inside the track[5]. 

If the previous conditions are not met, and the car is too close to the border of the road or 

if it is outside the road altogether, then EPIC has to take a new direction by modifying the steering 

angle to get closer to the road centerline[5].  

Second, the target speed is computed. Thus, the speed at which the car can safely ride 

depends on how straight it is going. The safe conditions for the speed are considered to be:  

 if the car is going almost straight,  
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 if the free distance in front of the car in the new direction set by the target angle is large enough,  

 if no sharp turn is anticipated to follow up on the road soon[5]. 

If the three conditions above are met, then the speeding up is set to its maximal value. This 

situation is called pedal to the metal [5]. In any other case, a large value for the target speed is set 

to start with, which is first scaled by the sine of the target angle for steering the angle and with the 

available free distance in the target direction [5]. 

Third, the driving behavior is adjusted by calculating “the sharp turn factor". This is used 

to avoid the situation where the car skids when it tries to turn by a large amount at a high speed. 

For this purpose, EPIC scans up to 20 degrees left and right of the target direction and it looks at 

the difference between the free distances ahead in adjacent directions that differ by 10 degrees. As 

Figure 3 illustrates, two situations could be resulted from the detection algorithm of sharp turns: 

 

 
Figure 3: Detection of a sharp turn [5] 

  

 A very similar value of free distance indicates a sharp turn in the road that requires the vehicle 

to slow down ahead of time because it can happen that at a high speed, the car will not be able 

to steer fast enough to make the turn.  

 A larger difference between these distances indicates that the road continues in a direction that 

is close enough to the current direction of movement, so it is safe to increase the speed [5].  

EPIC used a simple Hill Climbing technique to adjust several parameters that affect the 

control units of the car [5]. The controller also has a “dynamic adaptation mechanism” that can be 

used to learn the racing car’s behavior on a new track [5].  

 If no damage has been recorded during this first lapse, the parameters used for calculating the 

maximal speed in each situation are incremented to make the car go faster. 

 Otherwise every time the car gets out of the track or records damage without an opponent being 

close by, the pilot will keep the same values for these parameters or decrease them to make its 

behavior safer [5]. 
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EPIC has several well-developed functions, however, it required some improvements such 

as: 

 Making the pilot react to any approaching opponent as EPIC couldn’t handle the opponents. 

 The racing car sometimes is swinging while it is traveling on the road. Such instable movement 

needs to be improved to make the car’s movement more balanced. 

 

3.2 Procedural Methods 

The TORCS engine provides the following information to the controllers: a car status containing 

the current speed, the angle with the centerline of the road, the distance from the center of the road, 

and more; an array of sensors detecting the distance to the road border in a 5 degrees increment in 

a range of [-45, 45] degrees around the car's direction of movement; and array of opponent sensors 

with information about opponents present within a 200m radius of the car in all directions. 

The first goal of this thesis was to implement the Gazelle controller efficiently by 

improving the existing modules from the EPIC controller and by adding new components to deal 

with aspects not present in the EPIC driver. The EPIC driver is the starting module for the Gazelle 

driver. We also added new modules to deal with opponents and reduce the damage caused by 

hitting the hard shoulders of the road. 

 

The Gazelle Controller 

The Gazelle controller consists of three components: the target direction unit, the target speed unit, 

and the opponent adjuster. The target direction unit controls the direction in which the car is 

moving. The target speed unit adjusts the speed based on the target direction, while the Opponent 

Adjuster adjusts the direction and speed based on the opponents’ presence. Below we will describe 

each unit in more detail. 

 

Target Direction Unit 

The unit determines the target angle using the following guidelines: 

 If the current direction of the car is close enough to the road centerline, there is enough distance 

straight ahead, and the car is safely inside the track, then the car can continue in the same 

direction.  

 Otherwise, we start with the direction of the road centerline, and scan by 10 degrees in the 

direction in which the distance ahead increases, until we find an angle at which it decreases, or 

we reach the maximal turn angle of 45o.  Figure 4 (source: [5]) shows this scanning process of 

searching for a good path of movement. 
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Figure 4: The scanning process [5] 

 

If the car is too close to the border of the road or gets outside, we add a direction change to 

move it back inside. Currently, the borders threshold, denoted by safelyInsideTrack, is at 85% 

distance from the center of the road, to account for the width of the car. Let trackPosition be 

the current position of the car on the road, taking values between -1 and 1. If 

abs(trackPosition)>safeInsideTrack, then the new target angle is computed as: 
 

−25 ∗ sign(𝑡𝑟𝑎𝑐𝑘𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛)(abs(𝑡𝑟𝑎𝑐𝑘𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛) − 𝑠𝑎𝑓𝑒𝑙𝑦𝐼𝑛𝑠𝑖𝑑𝑒𝑇𝑟𝑎𝑐𝑘) 

 

Where the function abs returns the absolute value of a number and the function sign returns -1 

for a negative number, 0 for 0, and 1 for a positive number. This formula scales 25 degrees by 

how far the car is from the threshold. If the computed target angle already has a value of the 

same sign but of a larger absolute value, then this new target angle is not used because the 

normal method is performing the adjustment already. 

 If the current turning angle is good enough, we maintain it for movement continuity. This is 

determined by comparing the free distance ahead with the free distance 10 degrees left and 

right; if the distance ahead is the largest of the three values, then we can maintain the current 

angle. This is an addition to the Gazelle controller to improve the fluency of the car’s 

movement. 

  

As Figure 5 shows, after the target angle is computed, we identify four types of situations 

on the road: 

 Straight: if the road is straight ahead of the car and the target angle is between 0o and 10o. 

 Fast Curve: if the upcoming curve is small enough and its angle is between 10o and 15o.  

 Medium Curve: if the angle of the upcoming curve is between 15o and 30o. 

 Slow Curve: if the upcoming curve is wide and the target angle is greater than 30o. 
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Figure 5: The curve types 

 

We differentiate between the curves in order to adjust the target speed in the next module. 

Thus, the straight and fast curves allow the controller to drive at the maximum speed, while the 

slow curves require adopting the minimum safe speed to keep the car inside the track.  

 

Target Speed Unit 

The target speed is computed once we know the target angle. The unit determines the speed using 

the following guidelines: 

 If we are going almost straight or on a fast curve, the distance ahead is large enough, and no 

sharp turn is coming ahead, we aim for a configurable high speed parameter called 

“sundayDriver”. 

Otherwise the target speed starting from the sundayDriver value is first scaled directly 

proportional with the cosine of the target angle for the change in direction and with the 

available distance in the aimed direction. This way, the smaller the turning angle is, the larger 

the speed will be. Similarly, the more distance is available ahead, the faster the car will go. Let 

safeSpeed be a value for the speed that we think will be safe for any curve, such as 30 km/h. 

Let spaceFactor be the available free distance in the aimed direction normalized by the 

maximal sensor range (100m). The speed is computed as: 

 
𝑡𝑎𝑟𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑 = 𝑠𝑎𝑓𝑒𝑆𝑝𝑒𝑒𝑑 + (𝑠𝑢𝑛𝑑𝑎𝑦𝐷𝑟𝑖𝑣𝑒𝑟 − 𝑠𝑎𝑓𝑒𝑆𝑝𝑒𝑒𝑑) ∗ cos(𝑡𝑎𝑟𝑔𝑒𝑡𝐴𝑛𝑔𝑙𝑒) ∗ 𝑠𝑝𝑎𝑐𝑒𝐹𝑎𝑐𝑡𝑜𝑟2 

 

 The resulting target speed is scaled afterwards by a factor depending on the sharpest turn in 

the road detected ahead, 20 degrees left and right of the aimed direction. The purpose of this 

is to anticipate situations where the speed needs to be reduced. 

 

Opponent Adjuster Unit 

We put more efforts into building a component for dealing with opponents because the car’s 

performance can be optimized by handling the opponents properly. As we mentioned previously, 

most of the controllers we discussed before don’t handle the opponents well or at all. Neither the 

Simple Driver, the controller provided as an example by the TORCS competition, nor the EPIC 

controller can deal with the opponents.  

In our opponent adjuster, if an opponent violates that chosen tolerance values of closeness 

as determined by the opponent sensors in each direction, then the gas/brake control and steering 

control will be modified to avoid the collision the following way:  

 If there is an opponent at a distance of 200m or less, then a test will determine if it violates the 

safe distance (the tolerance values) in each of the available sensor directions.  

 

       Straight             Fast Curve         Medium Curve  Slow Curve 
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 If there is an opponent in the front of the car, on the sides, or in the rear of the car within an 

unallowable space, the following flags are turned on, causing a reaction of the respective 

modules: 

 

• A Brake flag for an opponent in the front. This flag takes care of the sensors in the range 

of -40o to 40o [13]. If an opponent is found within an unallowable space and its speed is 

close to ours, the car should brake immediately by modifying the brake/accelerate value to 

the half of the current speed. The tolerance values are shown in Table 1 and were adopted 

from [13]. 

 

Table 1: Opponents adjuster over the gas & brake action [13] 

Orientation of the Opponent Sensor Tolerance Value 

±40o 6    m 

±30o 6.5 m 

±20o 7    m 

±10o 7.5 m 

0 o 8    m 

 

• A Steering flag for an opponent in the front or on the side, it takes care of the opponent 

sensors in the range of -100o to 100o, also adopted from [13]. An overtaking manoeuver 

requires to modify the steering angle if the opponent violates the tolerance values. The 

tolerance values are shown in Table 2. 

 

Table 2: Opponent sensors tolerances for overtaking [13] 

Orientation of the Opponent Sensor Tolerance Value 

0o, ±10o 20 m 

±20o 18 m 

±30o 16 m 

±40o 14 m 

±50o 12 m 

> ±50o 10 m 

 

• An Accelerating flag for an opponent at the rear of the car driving at an equal or higher 

speed than ours. Increments values are summarized in Table 3.  

 

Table 3: Opponent sensors increments for overtaking [13] 

Orientation of the Opponent Sensor Increment Value 

0o, ±10o ±0.20o 

±20o ±0.18o 

±30o ±0.16o 

±40o ±0.14o 

±50o ±0.12o 

> ±50o ±0.10o 

 



14 

 

Trouble Spots Register 

This component was added in order to avoid the accidents caused by mistakes in predicting the 

right steering angle, leading the car out of the track. In TORCS competitions, the race starts with 

a warming level which allows drivers to learn the track. After that the actual race takes place in 

the second level. Thus, we introduced the “Trouble Spots Register” detecting and storing places 

in the track where the car gets out of the road starting from the warming level. In the subsequent 

lapses of the circuit, to avoid repeating these mistakes, we use a method decelerating the speed 

whenever the car is close to a trouble spot, by an amount inversely proportional to the distance to 

the trouble spot. 

A list of "trouble spots" on the road will be stored by the Gazelle driver in a persistent 

memory space in order to be accessible at later points during the race. To achieve this, the last 

position of the car on the road is stored in each frame. Then when the code detects that the car got 

out of the road, this position is added to the list.  

In each frame, the current position of the car is compared to the trouble spots. If we are 

close enough to one of them, the speed will be adjusted as mentioned above. The closer we are to 

the trouble spot, the faster the car will decelerate. 

The issue arises from the fact that the visibility of the driver is limited to 100m ahead and 

that it is difficult to break down the speed fast enough if the situation requires it. For this reason 

we adopted the approach of detecting a sharp turn on a road combined with the trouble spots 

detector.  

 

3.3 Learning Methods Overview 

In this part of the research, we aimed to optimize the performance of the procedural driver 

automatically using learning methods. Even though the ANN is initially not expected to 

outperform the original function that it learns from, which is the procedural Gazelle in our case, it 

has the potential to continue learning afterwards from real-time observations and become better 

over time. Also, we can expect some amount of noise in the procedural heuristics that can be 

reduced by the use of an ANN, and the pilot’s performance can be improved as a result.  As we 

mentioned before, our goal was to minimize the damage as much as possible, and to reach the 

maximum safe speed. These two goals can be achieved by reaching the ideal target angle and the 

ideal target speed. We need to enable the controller to learn before and during the race using 

learning algorithms. We will use two main algorithms for this purpose: Artificial Neural Networks 

and Hill Climbing. 

An Artificial Neural Network (ANN) is a learning method that is inspired by the way the 

human’s biological nervous system processes information. Such a system is composed of a large 

number of connected neurons, the processing elements, in which components work together to 

solve a specific problem [22]. The ANN is a “layered structure” consisting of three main layers: 

the inputs layer, the hidden layer, and the outputs layer [9]. The hidden layer uses the learning 

processing elements (neurons) to adjust the input values combined with a set of parameters in order 

to produce the optimal output solution.  

ANNs can learn by examples and they can be used for pattern recognition or data 

classification, and they are also appropriate for prediction or forecasting [22]. There are many 

applications of ANNs such as modeling and diagnosing the cardiovascular system, sales 
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forecasting, industrial process control, customer research, data validation, risk management, target 

marketing, and credit evaluation [22]. 

We implemented an ANN in the Gazelle system to compute the Target Angle Unit using 

the car state to represent the input layer. As Figure 6 shows, a hidden layer will process this input 

combined with parameters that predict the maximum safest angle. Based on these parameters, the 

ANN will outputs an advantageous target angle.  

 

 
Figure 6: Implementation plan for using neural networks in the Gazelle Controller 

 

 We will describe the ANN and how it is implemented in Gazelle more in details in the next 

section. 

We will use another learning method: the Hill Climbing (HC) algorithm. The HC 

Algorithm can be efficient to use for predicting a good path that the car should take in order to 

optimize some of the parameters used by the driving system and improve its performance. We 

used HC in the Target Speed Unit to improve the car’s performance.3.3.1 Artificial Neural Networks 

(ANN) 

In this section, we discuss the architecture, the applications and the categories of the neural 

networks. Furthermore, we describe the structure of our neural network and how we used it in the 

Gazelle to improve its performance. 

 

Architecture of Neural Networks: 

We will describe the basic ideas behind the artificial neural network first, then we will describe 

the architecture of the network itself. An ANN is a layered network composed of neurons. The 

network recives a number of input values, processes them through the successive layers, and 

produces one or more output values. The network can adapt to a particular problem by comparing 

the output value with a target value and modifying its internal parameters to reduce the difference 

incremently.  

 

Neuron Architecture: 

The architecture of the artificial neuron, the basic block in the artificial neural network, can be 

described as it is shown in Figure 7:  

 

 Car State 

 

Previous Target Angle 

 

The Neural 

Network 

ANN 

Target Angle 
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Figure 7: The basic of artificial neuron [1] 

 

Figure 7 shows that various inputs to the neuron are represented by 𝑥(𝑖). Each of these 

inputs is multiplied by a connection weight 𝑤(𝑖). These products are summed, fed through a 

transfer function to generate a result, which is returned as the output [1]. The transfer function or 

the activation function is the formula that defines the outputs of a neuron using an input or set of 

inputs. The activation function that we used is the hyperbolic tangent of the sum of weighted 

inputs, which is a classic function for neural networks taking values in the interval [-1, 1]: 

𝑂𝑢𝑡𝑝𝑢𝑡 = tanh (∑( 𝑤(𝑖)𝑥(𝑖)) 

𝑛

𝑖=0

) 

Since the output of the network in our case is an angle in radians limited to the range [-45º, 

45º], we do not need to scale the output of the neuron.  

 

Network Architecture: 

As it is shown in Figure 8, the network consists of three layers: 

 Input layer: consists of neurons representing external input data which play a role in 

characterizing the output.  

 Hidden layers: The architecture of these layers is characterized by the number of layers 

and the number of hidden neurons. It contains one or more layers and each layer is 

composed of a group of hidden neurons sharing the same inputs [9]. Such layers can do 

some basic pattern recognition operations [21]. 

 Output layer: yields the outputs from the neural network.  
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Figure 8: A simple artificial network with three layers (input layer, a hidden layer, and output 

layer) 

Hidden layer: 

We need to consider two concerns related to the hidden layer: 

 How many hidden layers should we use? 

 How many hidden neurons should we use? 

 

First: the appropriate number of hidden layers 

The number of hidden layers depends on the number of output neurons and on the type of 

the activation function. Even if this relationship cannot be established precisely, some 

recommendations for appropriate values can be found in the literature [17], [24]. 

If we have only one input, then there is no need to use more than one hidden layer. 

However, an ANN with two or more inputs requires adding another hidden layer [25]. We should 

not use any hidden layer if the ANN is a liner model [11]. This does not apply to us since our 

activation function is not linear.  

If the ANN requires continuous nonlinear hidden-layer activation functions, then one 

hidden layer is necessary for the “universal approximation” property [6].  

In special architectures such as cascade correction, using more than two hidden layers can 

be beneficial [4]. Based on the various indications and recommendations we found, we decided to 

use two hidden layers.  

 

Second: the appropriate number of hidden neurons 

Many approaches offer "rules of thumb" for choosing the number of the hidden neurons. One 

approach suggests that the number of hidden neurons should be between the number of the input 

neurons and the number of output neurons [2]. Another approach suggested the maximum number 

of hidden neurons should never exceed the double number of the input neurons [18]. 

In fact, the best number of hidden units shouldn’t depend only on the numbers of input and 

output units; indeed, it should take into consideration other aspects such as: the number of training 

cases, the amount of noise in the targets, the complexity of the function or classification to be 

 

 

 

 

 

 

 

 

 Input Layer     Hidden Layer               Output Layer 
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learned, the architecture of the network, the type of hidden unit activation function, and the training 

algorithm [25]. 

In most situations, there is no way to determine the number of neurons in the hidden layer 

without trial and error. If we have too few hidden neurons then we will experience a high training 

error and if we have too many hidden neurons then we could have a high generalization error 

caused by over-fitting [25].  

 

Neural networks applications: 

Neural networks are applicable to many real world problems. As neural networks are successful 

in identifying patterns in given data, they are well appropriate for prediction and forecasting such 

as: sales forecasting, industrial process control, customer research, data validation, risk 

management, target marketing, credit evaluation, diagnosing diseases, and suggesting treatment 

[24]. 

 

Neural networks categories: 

There are two main categories of the network architectures: 

1. Feed-forward networks: allow the input data to travel one way only; from the input layer 

to the output layer. In fact, the output of any layer doesn’t affect that same layer since there 

are no feedback operations [24]. In this way, in a feed-forward neural network, “the output 

of each neuron is a function of the inputs” as following:  

 

Output= f (inputs) [9]. 

 

2. Feed-backward networks: allow traveling data in both ways, forward and backward. Such 

a network keeps adjusting connections’ weights until it reaches a balanced state where the 

error between the desirable output and the actual output is diminished [24]. We used a feed-

backward ANN in the Gazelle system.  

 

3.4 The Neural Network Used in Gazelle 

We used a neural network within the Gazelle system to determine the target angle and we designed 

the architecture of the neural network as follows:  

 Output layer:  Derives the target angle that can be taken in the next frame. 

• The count of the output neurons is 1 or 5, as we shall explain later.  

 Input layer: We need a set of 5 parameters as input data for the neural network. As shown in 

Figure 9, these inputs include the car state and the track properties as following:  
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Figure 9: the input layer and output layer in the neural network used in Gazelle 

 

As it is shown above, the input layer consists of 5 input values: 

• The last target angle the racing car has taken in the previous frame in order to have 

more stability in the movement of the car.   

• The current angle which represents the angle between the car direction and the 

direction of the track axis. 

• Distance 1, and distance 2, two different distances between the car and the shoulders 

of the track. These distances are calculated from the angles between the car direction 

and the direction of the track axis by ±10 degrees. Such distances are major factors to 

determine the upcoming curves. 

• The car position which represents the distance between the car and the track axis or 

centerline. Such an input helps to determine an appropriate angle based on the car’s 

position.  

 

 Hidden layer: We used a sigmoid function, which is a mathematical function that has an "S" 

shape, as an activation function of the artificial neurons. We used tanh as the sigmoid activation 

function, thus we need two hidden layers since tanh is a continuous nonlinear activation 

function. Whereas, the number of neurons was chosen after trial and error in a range between 

the number of outputs and the double of the number of the inputs, between 1 and 10.  

We tried the ANN with two layers and with different numbers of hidden units, then 

we chose the most promising number of hidden neurons based on the car performance with 

each setting. We settled for 8 neurons in the first hidden layer and 3 neurons in the second 

one.  

 

 

Input Values         Input Layer          Hidden Layer   Output Layer 

Last target angle 

Current angle  

Distance 1                Target Angle  

Distance 2 

Car position  
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Figure 10: the car’s performance differs based on the count of the hidden neurons 

 

As it is shown in Figure 10, 

 If the neurons of the first layer are less than 7, then the car curves to the right 

 If the neurons of the first layer are more than 9, then the car curves to the left. 

 If the neurons of the first layer are 7 or 9 , then the car swings between the shoulders of the 

track. 

 If the neurons of the first layer are 8, then the car travels in the middle of the trak in a stable 

behavior. 

Then the best performance of the car happened when the count of the neurons for the first 

hidden layer was 8. 

  We chose 8 neurons for the first hidden layer, then we applied the same procedure 

to choose the appropiate number for the second hidden layer. We found out that 3 neurons in the 

second hidden layer made the car perform in a balanced way travelling in the middle of the track. 

To summarize,  

 The count of the neurons for the first hidden layer =8 

 The count of the neurons for the second hidden layer =3 

 

 

         … . 6     7        8     9    10 …      

Neurons count in the first hidden layer     
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NN implementation 

We intended for the ANN to be trained many times with each data set to get the best weights that 

can make the racing car perform well. We used a “classic back-propagation model” within an ANN 

system that was developed by Dave Miller [26]. This model comes with a video tutorial that is 

presented as a guideline for the programmers to design, analyze, and implement a neural network 

[26].  

Starting from the existing code for the ANN and Gazelle, we edited it to include advanced 

tasks such as: 

 Output the training data to an external text file during the race when the ANN is disabled for 

the purpose of collecting the training data. 

 Read the training data file when the client is running and the ANN is enabled. 

 Assign the number of iterations that the ANN needs to be trained with, during the training 

process. 

 Output the error rate, during the training process, to be analyzed later. 

 Enable to choose between Best-weights model and Last-weights model:  

• The Best-weights model keeps the best values of the weights when the ANN presented the 

minimum average error during the training process.  

• The Last-weights model keeps the latest values of the weights acquired at the end of the 

training process. 

 Enable to choose between the ANN1 model and the ANN5 model: 

• ANN1: In this model, the value of the target angle is represented by one neuron. 

• ANN5: In this model, the value of the target angle is represented by five neurons. The goal 

of this model is to make it easier for the ANN to learn specific values of the target angle 

by dividing the range of values into 5 intervals and assigning each interval to a different 

output neuron. This way each neuron has a smaller task to learn. This model achieves this 

by two operations:  

1. Angle to Neurons: this operation converts the target angle from the normal form to 5 

neurons in the following way:  

• We divided the range of the target angle into 5 intervals as follows: 

[…,-0.6), [-0.6,-0.3), [-0.3, 0.0), [0.0, 0.3), [0.3, 0.6].  

• Every interval is assigned a corresponding neuron out of the 5 output neurons. Let 

“intervals” be the array [-0.6, -0.3, 0, 0.3, 0.6]. Let i be an index between 0 and 4 

such that the position of the target angle is between intervals[i] and intervals[i+1]. 

First, we calculate the difference between the intervals[i] and the target angle, then 

we calculate: 

 

𝑎𝑙𝑝ℎ𝑎 =
𝑡𝑎𝑟𝑔𝑒𝑡𝐴𝑛𝑔𝑙𝑒 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠[𝑖]

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠[𝑖 + 1] − 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠[𝑖]
=

𝑡𝑎𝑟𝑔𝑒𝑡𝐴𝑛𝑔𝑙𝑒 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠[𝑖]

0.3
 

 

We set the corresponding neuron’s value for output[i] and output[i+1] to 1-alpha 

and alpha respectively. This way, the closer the target angle is to the value assigned 

to a neuron, the closer to 1 will be the output of this neuron. 

• If the value of the target angle is not between intervals[i] and intervals[i+1], then 

the corresponding neuron’s value is set to 0. 
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2. Neurons to angle: in this operation, we retrieve the target angle in its normal form from 

the  5 neurons as follows: 

• We multiply each value of intervals[i] by the value of the corresponding neuron. 

• The resulted products are summed to acquire the target angle in the normal form. 
 

3.5 Dynamic Training 

In this section we present another learning component that we added to the ANN to enable it to be 

trained in real time during the race. We enhanced the ANN with the Dynamic Training feature that 

we developed with the purpose of training the neural network in real time by adjusting its weights 

if the target angle is misestimated. 

The dynamic system is based on detecting three types of situations:  

 when the car gets out of the track,  

 when the car is about to get out of the track,  

 when the car is stuck. 

 For each of them, a flag is being raised in the system that can be detected by the dynamic 

learning system. 

The flag for the car being out of the track is raised when the position of the center of the 

car on the road is at more than 85% of the road's width. This is an empirical value established to 

account for the width of the car. The flag for the car being stuck is turned on when the angle 

between the car axis and the road is at more than 20º. The flag for the car being about to get out of 

the track is turned on when the car's position on the road is at more than 80% and the front of the 

car is pointing towards the outside of the track. 

If either of these flags is turned on, the input values for the neurons (track position, last car 

angle with the road, and so on) are fed into the ANN. Then the new target value for the output (the 

angle) is adjusted the following way. If the car is already outside of the road, and it had been 

pointing out, then the angle is reduced by 10%. If the car had been pointing towards the inside of 

the road, it means that it was already trying to correct the trajectory, but the effort was not enough, 

so the angle is increased by 10%.  

For the flags indicating that the car is about to get out, or to get stuck, if the car was pointing 

towards the outside of the road, then the target angle will be multiplied by a  factor of –0.25, to 

reverse direction and continue the other way by a smaller amount. Otherwise the angle is reduced 

by 25%.  

Finally, the new target angle is fed to the ANN as the target output, and back-propagation 

is used to train the ANN with this new value. We only use one iteration in this case to avoid over-

specializing the network.  
 

3.6 Hill Climbing (HC) 

We also present another learning system that enables the controller to adjust its speed during the 

race. We used a simple Hill Climbing technique to adjust several parameters that controlled the 

car [5]. The Hill Climbing “is simply a loop that continually moves in the direction of increasing 

value” and “It terminates when it reaches a ‘peak’ where no neighbor has a higher value” as Stuart 

Russell and Peter Norvig state in [17]. Hill Climbing does not look forward beyond the close 

neighbors of the current state [17]. This algorithm, which was used earlier by EPIC, has a “dynamic 

adaptation mechanism” to learn the behavior of the racing car on a new track [5]. The method 

works as follows: 
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 If no damage has been recorded during the first lapse, the parameters designating the maximal 

speed in each situation are increased to make the car go faster. 

 Otherwise every time the car gets out of the track or records damage without an opponent being 

close by, the pilot will decrease these parameters to make its behavior safer [5]. 

 

3.7 Gazelle Contributions 

Here is a summary of the improvements on the EPIC system that were made in the Gazelle system: 

1. The Opponent Adjuster Unit: a component that enables the Gazelle pilot to deal with 

opponents. It reacts to any approaching opponent based on its location and how close it is 

to the pilot.  

2. Trouble Spots Register: this component is used to discover the areas in which the car gets 

out during the first lapse and then to adjust the car’s speed when it is approaching these 

areas. 

3. Adding an artificial neural network to compute the appropriate target angle precisely. Such 

a learning component improves the fluency of the car’s movement. 

4. Adding the “Dynamic Training” feature which enables the driver to continue training the 

ANN in real time during the race and can potentially help the car to deal more easily with 

new tracks.   

5. Using the “Hill Climbing” algorithm to adjust the speed during the race to minimize the 

damage.  
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4. Experimentation 
In this chapter, we present all the experimentations that we performed in order to measure the 

performance of the Gazelle controller after developing many functions and adding many features. 

We start by describing the methodology that we used to measure the performance of the Gazelle. 

Then we present the experimental results of running the Gazelle alone, with opponents, and with 

using the learning methods. 

 

4.1 Methodology  

We established a set of tests to measure the performance of the Gazelle controller comparing it to 

previous work. We compared the newly developed methods with two existing controllers: EPIC 

and the Simple Driver. We run each controller by chosing the car called “SRC-server1”, which 

represents the running client for the tested controller, to compete itself and measure its 

performance.  

For the tracks, TORCS provides various tracks to choose from. These tracks are designed 

by different developers with the purpose of testing the performance of the controller on circuits of 

various difficulty and on various types of roads. During the competitions, drivers can expect to be 

exposed to unfamiliar roads to challenge their ability to win the race with minimal damage in a 

record time. We started by choosing a number of tracks to test the systems on, and by determining 

the experimental conditions to be applied to all of them. 

The TORCS training environment provides three main categories of tracks: road tracks, 

dirt tracks, and oval tracks. There are 21 road tracks that are asphalt circuits of a significant length 

with many curves of various difficulty. In addition, the system offers 8 dirt tracks, also quite 

lengthy and representing an increasing challenge in terms of car control. There are 9 oval tracks, 

which are shorter and more predictable, and designed mostly for speed optimization. We chose 

three of the road tracks, one dirt track, and one oval track. Of the oval tracks, E-Track5 looks the 

most interesting because it has curves in both directions. Of the dirt tracks, Dirt 4 looks like it has 

a good variety of curves. For the road tracks, we chose three of these tracks: Forza, Alpine2, and 

E-road. Table 4 shows the properties and description of each selected track. E-Road and Dirt4 are 

the same track except for the road type 

 

Table 4: Properties of the selected tracks 

Track Name E-Track Alpine 2 E-Road Dirt4 Forza 

Track Shape 

 

    
 

Track Type  Oval  Road Road Dirt Road 

Description 

Simple road 

course 

Slow mountain 

road 

Road course Based on  

E-Road track 

Very fast and 

smooth 

circuit 

Length 1621.73 m  3773.47 m 3260.43 m 3260.43 m 5784.10 m 

Width 20.0 m 10.0 m 16.0 m 16.0 m 11.0 m 
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Figure 11: The Alpine2 track on the left, and the car is travelling on the same track on the right 

 

As Figure 11 shows, the Alpine 2 track is a road track; its shape has many curves of all 

kinds: fast, medium and slow curves. Such a road enables us to test the performance more 

efficiently. This figure also showcases the material of the road on the right, which looks like 

asphalt. Cars in the simulation in TORCS interact with the road’s material and the behavior on the 

road depends on it. On Tracks made of asphalt allow the cars to travel more fluently than on a dirt 

road.  

For each set of experiments, we set the maximum speed and the safe speed for all of the 

three drivers with the same value. The maximum speed can vary based on the presence of 

opponents and of the neural netork. We shall specify the speed setting for each set of the 

experiments.  We set the number of lapses on each track to two in all the cases. As the tracks are 

generally lengthy, two lapses are enough for an accurate comparison. The second lapse is important 

for any driver system that learns some information during the first lapse and it allows us to see if 

the learning process is efficient. At the end of the two lapses, the program itself outputs some 

information, such as the total time and the damage. We will also add some other measures that 

are good indicators of performance: the number of times the car gets out of the road, the total 

number of times the car exited the road, and the total distance covered by the end of the race. The 

more distance is covered in one lapse, the less efficient the driver is.  

Then we will run the three drivers, Simple, EPIC, and Gazelle, on the five tracks and store 

these measures for all of them.  

 

4.2 Procedural Gazelle Experiments  

We performed a set of experiments to measure the Gazelle performance compared to the 

performance of EPIC and the Simple Driver. We set the maximum speed for all the three drivers 

to 150 km/h and the safe speed to 100 km/h, and we set the number of lapses to 2 lapses per race. 

For this set of experiments, we ran every controller on its own (without opponents) by 

running each of them on the five tracks. This means that we needed to run the client 15 times (3 

drivers * 5 tracks) to get the results shown in Table 5. 
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Table 5: Procedural Gazelle experimental results 

E-track5 

 Simple Driver EPIC Gazelle 

The total number of times the car exited the road 0 0 0 

The number of frames spent outside the road 0 0 0 

The total distance covered by the car from the beginning of the race 3268.91 m 3268.53 m 3267.78m 

The maximum distance covered by the car from the start line along 

the track line 
1621.73 m 1621.31 m 1621.04m 

The damage of the car 0 0 0 

Total time for the race 2:15:45 2:34:00 1:27:10 

Lapses 2 2 2 

Dirt4 

 Simple Driver EPIC Gazelle 

The total number of times the car exited the road 0 0 1 

The number of frames spent outside the road 0 0 123 

The total distance covered by the car from the beginning of the race 6546.22 m 6545.71 m 6545.7 m 

The maximum distance covered by the car from the start line along 

the track line 
3260.23 m 3260.37 m 3260.25m 

The damage of the car 0 0 71 

Total time for the race 5:44:15 5:07:27 4:01:45 

Lapses 2 2 2 

Alpine2 

 Simple Driver EPIC Gazelle 

The total number of times the car exited the road 0 0 1 

The number of frames spent outside the road 0 0 81 

The total distance covered by the car from the beginning of the race 7573.55 m 7574.1 m 7571.96m 

The maximum distance covered by the car from the start line along 

the track line 
3773.39 m 3773.35 m 3773.37m 

The damage of the car 0 0 3314 

Total time for the race 7:07:37 6:44:49 5:32:39 

Lapses 2 2 2 

E-road 

 Simple Driver EPIC Gazelle 

The total number of times the car exited the road 0 0 0 

The number of frames spent outside the road 0 0 0 

The total distance covered by the car from the beginning of the race 6547.46m 6546.23m 6546.05m 

The maximum distance covered by the car from the start line along 

the track line 
3260.39m 3260.01m 3,272.82m 

The damage of the car 0 0 0 

Total time for the race 5:38:03 5:09:14 3:36:06 

Lapses 2 2 2 

Forza 

 Simple Driver EPIC Gazelle 

The total number of times the car exited the road 0 21 4 

The number of frames spent outside the road 0 2186 1051 

The total distance covered by the car from the beginning of the race 11602.1m 3863.74m 11593.3m 

The maximum distance covered by the car from the start line along 

the track line 
5783.91m 5783.73m 5784.09m 

The damage of the car 0 4649 129 

Total time for the race 
6:13:39 

Failed 

to complete 
2:41:36 

Lapses 2 0 2 
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As Table 5 shows, out of the three drivers, the minimum time was achieved by the Gazelle 

controller on each of the five tracks. This was due to the Target Direction Unit. The target direction 

allows the car to adjust the required steering angle to the minimum angle to achieve the safest 

maximum speed and as a result, the Gazelle succeeded in achieving the best time. However, taking 

a smaller target angle required more distance to be covered by the car making it take a less efficient 

trajectory. Also, the number of times the car gets out of the road on Alpine2 and on Forza was 

higher for Gazelle and, accordingly, the total time the car spent out of the track was potentially 

higher than for the two other controllers. Thus, higher damage happened as a result of the collision 

with the outer walls of the track when the car got out of the track. 

The Simple Driver and EPIC achieved less damage compared to the Gazelle. The Simple 

Driver & EPIC both completed the race with no damage, while Gazelle was able to complete all 

the tracks without damage except on Dirt4 and Alpine2 where the damage was high.We will see 

in the coming subchapters that improvements to the procedural methods and the application of the 

learning methods will remedy this aspect.  

 

4.3 Handling Opponents  

We performed a set of experiments to measure the Gazelle’s ability to handle the opponents and 

we compared it to the performance of EPIC and the Simple Driver to handle the same opponents 

on the same tracks.We chose the pilots berniw1, InfHist1, and inferno10 provided by the TORCS 

system for this purpose. The system runs races involving several opponents in such a way that they 

are terminated when a clear ranking can be established. This means when all but one of the 

competing cars have finished the prescribed number of lapses, the race is ended.  

We set the maximum speed for all the three drivers to 250 km/h and the safe speed to 100 

km/h to be compareable to the speed of the opponents, which wasn’t configurable. Then we set 

the lapses to 2 lapses per race. 

We run every controller along with the three other built-in opponents: berniw1, lnfHist1, 

and inferno10. These opponents have various levels of performance: high, medium, and low 

respectively, as specified in the Torcs manual[10]. Then we used as measurement the rank of the 

tested controller among the running pilots at the end of the race and measured the time that the 

winner car achived and the latency time that the controller spent if it wasn’t the winner. The latency 

represents the number of lapses by which the competing cars are behind the winning one. We 

performed the same experiment for every controller on each track. Table 6 shows the results of 

testing the three controllers individually, which also involved running the clients 15 times (3 driver 

*5 tracks):  
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Table 6: The results of testing the controllers’ ability to deal with opponents in TORCS on every 

track 

E-track5 
 Simple Driver EPIC Gazelle  

The total number of times the car exited the road 0 0 0 

The number of frames spent outside the road 0 0 0 

The total distance covered by the car from the beginning of the race 3382.4 3368.68 3360.96 

The maximum distance covered by the car from the start line along 

the track line 
3268.45 3268.46 3314.72 

The damage of the car 0 0 0 

Rank 3/4 3/4 3/4 

Total time 1:29:59 7:59:19 1:27:34 

Total time for the winner car 0:55:27 7:27:00 0:53:05 

Latency of the controller 0:34:32 0:32:19 0:34:29 

Lapses 1/2 2/2 2/2 

E-road 
 Simple Driver EPIC Gazelle 

The total number of times the car exited the road 0 0 0 

The number of frames spent outside the road 0 0 0 

The total distance covered by the car from the beginning of the race 6548.62 6648.71 4347.97 

The maximum distance covered by the car from the start line along 

the track line 
3272.92 3272.92 3285.42 

The damage of the car 403 139 0 

Rank 4/4 3/4 4/4 

Total time 3:27:38 3:28:41 2:17:21+1Lap 

Total time for the winner car 2:06:08 2:06:35 2:17:21 

Latency of the controller 1:21:30 1:22:06 + 1 lap 

Lapses 2/2 2/2 1/2 

 

Dirt4 
 Simple Driver EPIC Gazelle  

The total number of times the car exited the road 2 2 2 

The number of frames spent outside the road 213 231 287 

The total distance covered by the car from the beginning of the race 6546.87 6545.94 6546.96 

The maximum distance covered by the car from the start line along 

the track line 
3272.91 3272.90 3272.92 

The damage of the car 185 143 51 

Rank 4/4 4/4 4/4 

Total time 4:00:45 3:58:41 4:11:49 

Total time for the winner car 2:50:31 2:33:59 2:30:20 

Latency of the controller 1:10:14 1:24:42 01:41:29 

Lapses 2/2 2/2 2/2 

Alpine 2 

 Simple Driver EPIC Gazelle  

The total number of times the car exited the road 14 18 0 

The number of frames spent outside the road 2225 2763 0 

The total distance covered by the car from the beginning of the race 4379.32 4394.89 5919.3 

The maximum distance covered by the car from the start line along 

the track line 
3798.583 

3798.58

3 
2120.72 

The damage of the car 3169 1634 3250 

Rank 4/4 4/4 4/4 
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Total time 3:06:17  

+ 1 lap 

3:06:17 

+ 1 lap 

3:03:11 

+1 Lap 

Total time for the winner car 3:06:17 3:06:17 3:03:11 

Latency of the controller + 1 lap + 1 lap + 1 lap 

Lapses 1/2 1/2 1/2 

Forza 

 Simple Driver EPIC Gazelle  

The total number of times the car exited the road 1 1 2 

The number of frames spent outside the road 13374 13373 140 

The total distance covered by the car from the beginning of the race 2770.68 2770.78 5809.64 

The maximum distance covered by the car from the start line along 

the track line 
2745.69 2745.78 5809.10 

The damage of the car 0 0 0 

Rank 4/4 4/4 4/4 

Total time 02:39:32 

+2 laps 

2:39:32 

+ 2 laps 

02:46:01 

+1 Lap 

Total time for the winner car 2:39:32 2:39:32 2:46:01 

Latency of the controller + 2 lap + 2 lap + 1 lap 

Lapses 0/2 0/2 1/2 

 

On E-track5, which is a fairly easy oval road, the three controllers presented similar results; 

they didn’t get out of the track nor took any damage. Furthermore, all of them achieved the third 

rank out of four racing cars. The Gazelle completed the race successfully in 1:27:34 average time 

per second, and EPIC came in second with 6:31:45, while the Simple Driver couldn’t complete 

the second lapse. 

On E-Road, which is a wide road with a lot of curves, the Gazelle is the only controller 

that failed to complete the race; this failure was due to reducing the speed to the safe speed when 

the car was taking the curves. However, it succeeded in remaining inside the track during the race 

without any damage while the two other controllers suffered medium damage caused either by 

hitting the hard shoulders on the side of the road or by colliding with other opponents. 

On Dirt4, which is similar to E-road except that the surface is dirt, all the controllers 

completed the race successfully in comparable time. Furthermore, the Gazelle was successful in 

reducing the damage potentially compared to EPIC and to Simple Driver.  

On Alpine2, which is a slow mountain road, the Gazelle is the only controller that 

succeeded in remaining inside the track during the whole race. However, the racing car hit the 

hard shoulders frequently. Such collisions were due to two reasons: 

1. The nature of Alpine2, which is a narrow road.  

2. The speed of Gazelle controller which was too high while the racing car was taking sharp 

curves given the fact that we had to run this experiment at a higher speed than the one the 

controller was developed with (150 km/h) to keep it closer to the competing cars. 

Such collisions with the hard shoulders of the road on curves caused high damage to the 

racing car. All three controllers were only able to complete one lapse. However, Gazelle achieved 

the longest distance out of the three before the race was terminated. 

On Forza, which is a road with sharp curves, the Gazelle performed the best among the 

controllers; it was capable to complete one lapse before the race was terminated while EPIC and 

Simple Driver failed to complete the first lapse. Also, the Gazelle spent less time outside the road 

compared to the other two controllers by a count of 95 times.  
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In conclusion, the Gazelle is capable to handle the opponents better than the two other 

models and capable to reduce the number of times the car exited the track potentially. Also, it 

performs more efficiently than the two others at the high speed used in these experiments on the 

E-track, Dirt4, and Forza tracks. 

 

4.4 Data Collection and Preparation 

In this section, we will discuss how the data for the ANN was collected and processed. 

 

4.4.1 Collecting Training Data 

First, we need to collect the data to use for training the two types of neural networks: 

1. ANN with one output neuron (ANN1). 

2. ANN with five output neurons (ANN5). 

We derived the required data for determining the target angle for every track alone and 

output them to text files. The data consist of the values for the last target angle, the postion of the 

car,  the current direction of the car, and the two distances between the car and the shoulders of 

the track by 10 degrees right and left that where written to the file as the “input values” and the 

target angle as “output value". We collected  these values for each frame on the track with the 

pilot setup as the procedural Gazelle. At the end of this step, we acquired 5 data files, one data 

file for each track. Table 7 shows the counts of the training data for each track: 

 

Table 7: Counts of training data 

Track Name Count of its training data 

E-Track5 3765 

Dirt4 7822 

E-Road 7984 

Alpine2 10194 

Forza 13140 

 

Normally, ANNs need to be trained in a large number of passes through the data, as for 

example 500 passes. If we want to train the ANN that many times, the training data files are 

excessively large, as Table 7 shows, and it is not clear that more data is beneficial to the ability of 

ANN to learn.  We needed to reduce the amount of data in such a way that we wouldn't lose the 

unique data points and that we give the data points in various ranges an equal opporunity to feed 

the ANN. It’s also important for the data points to be fed to the ANN in a randomized order, to 

avoid over-specializing caused by similar data seen in sequence. We will explain how we filtered 

the data and randomized their orders in the next subchapter. 

 

4.4.2 Filtering and Randomizing the Training Data 

The training data we initially collected were enormous, with an uneven distribution and also a non-

random distribution. Thus, they needed to be filtered. We performed four steps to aquire filtered 

and randomized data: import data into Microsoft Excel, interval statistics, filtering, and 

randomizing.  
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First step: Import into Microsoft Excel: 

We imported all the data files into a Microsoft Excel workbook. Every data file was stored in a 

separate worksheet containing a table holding the data.  

 

Second step: Interval statistics: 

In order to analyze the distribution of the collected data, we divided the Target Angle, which is the 

output value, into several small intervals, as shown in Table 8. Each interval was assigned an 

identifying number, also shown in Table 8. 

 

Table 8: The numbers assigned to each interval of the target angle range 

The interval The interval’s ID number 

<= -0.5º 0 

[-0.5º, -0.4º) 2 

[-0.4º, -0.3º) 3 

[-0.3º, -0.2º) 4 

[-0.2, -0.1º) 5 

[-0.1º, -0.01º) 6 

[-0.01º, 0.01º) 7 

[0.01º, 0.1º) 8 

           [0. 1º, 0.2º) 9 

[0.2º, 0.3º) 10 

[0.3º, 0.4º) 11 

[0.4º, 0.5 º) 12 

[0.5º, 0.6º) 13 

>=0.6º 14 

 

The length of every interval is 0.1º except between -0.01º and 0.01º, where we added a 

smaller interval (length=0.02º), because the data are comprehensive around the zero when the 

racing car is traveling on a straight line (the target angle is almost zero). 

We assigned a number for the data belonging to the same interval by generating a statement 

of conditions by a loop in Basic, to acquire the following formula: 
=IF(I1>-0.5, 

    IF(I1>-0.4, 

        IF(I1>-0.3, 

  ... 

IF(I1>0.5, 

    IF(I1>0.6,0,14) 

,13) 

          ... 

        ,4) 

    ,3) 

,2) 

 

Then we added a new column (let’s call it: Col K) to hold this formula for all the data and 

to represent the corresponding number of the intervals from Table 8 based on the output value (the 

target angle). We can see the count of data points (or size) in every interval for each track in the 

following charts in Figure 12: 
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Figure 12: The data size in every interval for each track 

 

As we saw in the previous charts, we have intervals with enormous amount of data such as 

[-0.1,-0.01), and others with only few data points to represent them (such as [0.6, …) ). What we 

need is an equal chance for every interval to feed the Neural Network with its data or closer to 

equal if possible. We need to keep all of the data points that represent the small intervals with a 

small data count and randomly select a given number of data points from intervals that contain 

comprehensive data points. 

 

Third step: Filtering: 
To filter the data to obtain a more uniform distribution, we took the following steps: 

1. We added a new column (Col L) to count the number of total records that belong to the same 

interval as the target angle on each row. For example, if the value of the target angle on one 

Intervals Intervals 

Intervals 

Intervals 

Intervals 
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row was 0.24 and the data file was for E-Road, then column L would show the count of the 

data in the interval [0.2,0.3) for this track. To do this job, we applied the following formula to 

(Col L): 
=COUNTIF(K:K,K1)  

Where K1 is the value of the designated interval number, computed with the formula on page 

31. This provides the count of the value of the cell K1 in the entire column K. 
 

2. We assigned non-repeating random numbers to every data record belonging to the same 

interval by generating random integer numbers between 0 and the total count of data in the 

interval that the current target angle belongs to (Col L of the current row). We applied the 

following formula to compute a new column (Col M):  
=RANDBETWEEN(0,L1) 

This function generates a random integer number in the given range. 
 

3. To get a reasonable amount of data in each interval, we filtered the data based on the random 

numbers in Col M having values less than 50, which is the total count that we chose to keep in 

each interval. This procedure will keep all the data that belong to small intervals of small counts 

and also choose the right number of data from intervals that have comprehensive data. Table 

9 shows some statistics of the count of data before and after filtering for each track. 

 

Table 9: statistics of training data before/after filtering process 

Track 

Name 

Data 

before 

filtering 

Data 

after 

filtering 

Percentage 

of kept data 

E-Track5 3765 398 11% 

Dirt4 7822 745 10% 

E-Road 7984 743 9% 

Alpine2 10194 1060 10% 

Forza 13140 604 5% 

 

As a result, we reduced the size of data to the 11% of the original count in such a way that 

we have a rational amount of data for every interval without neglecting the unique data that are 

required to feed the ANN. The result of this procedure is shown in Figure 13.  
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Figure 13: the data size in every interval for each track. Before filtering (left), after filtering (right) 
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Forth step: Randomizing: 

In this step we needed to sort the data randomly, such that the ANN is not over-trained by similar 

data points being fed in sequence. For this part, we proceeded with the following operations:   

1. Adding a new Column (Col J) to generate random fractional numbers between (0, 1) using: 
RAND() 

2. Sorting the filtered table based on Col J. 

 

After this step, the training data were filtered and randomized and they were ready to feed 

the ANN. Figure 14 shows how the data distribution was like before and after the entire process 

that we described in this section. 

The charts before the filtering and randomizing process (on the right side in the charts) 

show that the data are dense around the value 0 because the Target Direction Unit only changes 

the target angle when there is an upcoming curve or the car is approaching  the sides of the road. 

Thus, the interval of 0 degrees contains redundant data which needed to be shredded. On the other 

side, for large values of the target angle, the intervals contain less data, which means that we 

needed all of them in such situations.  

 After the procedure (on the right side in the charts), the data became less redundant in the 

comprehensive areas and the unique data from the sparse intervals were all kept. 
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4.5 Retrospective Testing of the ANN 

After deriving the data from every track, the first evaluation step is retrospective, where the 

training and testing tracks for the ANN are the same. Thus, we need to train the ANN on the data 

file collected from a track, then we use it to drive the car on the same track. The procedure is 

repeated for each of the five tracks. First, this will tell us if the ANN is capable of learning to 

produce an appropriate target angle. Second, based on these results we can decide which data set 

is more likely to work best with all the tracks. The reason we need to make such decision is that 

during the competition the pilot will be faced with a track it has not seen before and we are trying 

to prepare the best for this situation. 

4.5.1 Testing Tracks 

For the results in this section, we trained the ANN for each track using the data file collected on 

the same track.  

We set the maximum speed for all the situations we have tested to 150 km/h and the safe 

speed to 100 km/h and we set the lapses to 2 lapses per race.   

We trained the ANN with one neuron (NN1) and with five neurons (NN5) by repeating 

the process of feeding the data and adapting the ANN to it by back-propagation in a large number 

of iterations in an attempt to reduce the error value to the minimum. We experimented with 

training the ANN over 100 iterations and over 500 iterations using one of two features: the last 

weights values present in the ANN at the end of the training process or the best weights values 

that were present in the ANN when the average error had the minimal value of the entire training 

process. By combining the different alternatives for these settings, we trained the ANN by using 

the data file for a track on the same track in 8 different models as shown in Tables 10 to 17. 

 

1- ANN with 1 Neuron- 100 iterations- Last values Model: 

 

Table 10: Results of applying ANN with 1 Neuron- 100 iterations- Last values Model 

 

Etrack

5 Dirt4 E-Road Alpine2 Forza 

The total number of times the car exited the road 37 65 65 3 1 

The number of frames spent outside the road 5707 12395 12395 32 27791 

The total distance covered  by the car from the 

beginning of the race 
329.337 439 439 7572.02 2771.34 

The maximum distance covered by the car from 

the start line along the track line 
304.337 414 414 3773.46 2746.34 

The damage of the car 1115 2133 2133 0 0 

Total time +1 lap +1 lap +1 lap 8:13:01 +1 lap 

lapses 0/2 0/2 0/2 2/2 0/2 

 

Table 10 shows the results obtained with one output neuron in 100 iterations, and using the 

last values for the weights. On E-Track5, Dirt4 and E-Road, the racing car covered a short distance 

and it got stuck a lot, which caused a high damage to the car. Meanwhile, the Alpine2 was the 

best-performance track for this model because there was no damage and the car finished the race 

successfully in an acceptable time. The total time was 8:13:01 minutes as compared to 5:32:39 
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minutes on the same track without using ANN.  On Forza, the racing car failed to complete the 

race because it got stuck in a sharp turn and it wasn’t able to return back to the track.  

 

2- ANN with 1 Neuron- 100 iterations- Best values Model: 

 

Table 11: Results of applying ANN with 1 Neuron- 100 iterations- Best values  

 

Etrack

5 Dirt4 E-Road Alpine2 Forza 

The total number of times the car exited the road 30 1 1 1 4 

The number of frames spent outside the road 4801 184 184 9 17613 

The total distance covered  by the car from the 

beginning of the race 
1450.44 6546.11 6546.11 7572.78 9682.41 

The maximum distance covered by the car from 

the start line along the track line 
1425.44 3272.826 3272.826 3785.746 3873.37 

The damage of the car 1412 0 0 510 148 

Total time +1 lap 6:24:47 6:24:47 10:07:46 +1 lap 

lapses 0/2 2/2 2/2 2/2 1/2 

 

Table 11 shows the results obtained with one output neuron in 100 iterations, and using the 

best values for the weights. On E-track5, the car got out of the track a lot, 30 times to be precise, 

and thus it was highly damaged. As a result, the car failed to complete the race successfully. The 

racing car on Dirt4 and E-Road got out of the track only once and it was able to get back to the 

track quickly and there was no damage at all. Thus, the car was able to complete the race 

successfully in 6:24:47 minutes as compared to 4:01:45 minutes for Dirt4, and 3:36:06 minutes 

for E-Road without using ANN.  On Alpine2, the racing car was also able to complete the race. 

However, it received the highest damage among the tracks. On Forza, the racing car failed to 

complete the second lapse because it got stuck in a sharp curve and it wasn’t able to get out of it.  

 

3- ANN with 1 Neuron- 500 iterations- Last values Model: 

 

Table 12: Results of applying ANN with 1 Neuron- 500 iterations- Last values  

 Etrack5 Dirt4 E-Road Alpine2 Forza 

The total number of times the car exited the road 36 65 4 1 1 

The number of frames spent outside the road 5530 11407 699 29 28459 

The total distance covered  by the car from the 

beginning of the race 
322.424 664.23 6545.87 7572.8 2766.21 

The maximum distance covered by the car from 

the start line along the track line 
297.43 639.23 3260.42 3785.74 2741.21 

The damage of the car 1096 3162 105 1065 17 

Total time +1 lap +1 lap 9:31:12 9:12:23 +1 lap 

lapses 0/2 0/2 0/2 2/2 0/2 

 

Table 12 shows the results obtained with one output neuron in 500 iterations, and using the 

last values for the weights. On E-Track5, Dirt4 and E-Road, the racing car failed to complete the 

race, because the car got stuck a lot and spent a long time outside the track. The damage on these 
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tracks also was high. On Alpine2, the car was able to complete the race successfully though it was 

highly damaged. On Forza, the racing car failed to complete the race because it got stuck in a sharp 

curve and it wasn’t able to escape from it. 

 

4- ANN with 1 Neuron- 500 iterations- Best values Model: 

 

Table 13: Results of applying ANN with 1 Neuron- 500 iterations- Best values 

 Etrack5 Dirt4 E-Road Alpine2 Forza 

The total number of times the car exited the road 19 3 6 3 2 

The number of frames spent outside the road 3040 289 845 1103 318 

The total distance covered  by the car from the 

beginning of the race 
3269.44 6546.14 6546.5 7573.33 11594.4 

The maximum distance covered by the car from 

the start line along the track line 
1633.76 3272.78 3272.62 3785.55 5795.95 

The damage of the car 902 282 758 840 0 

Total time 5:26:06 6:33:51 7:22:02 9:59:44 24:44:06 

lapses 2/2 2/2 2/2 2/2 2/2 

 

Table 13 shows the results obtained with one output neuron in 500 iterations, and using the 

best values for the weights. With these settings, racing car was able to complete all the five tracks 

successfully. On all tracks, except Forza, the car received high damage and spent a significant 

amount of time out of the track.  On Forza, the car was able to complete the race successfully 

without any damage but it spent very long time out of the track, 24:44:06 minutes as compared to 

2:41:36 minutes without using the ANN.  

 

5- ANN with 5 neurons -100 iterations -Last values Model: 

 

Table 14: Results of applying ANN with 5 neurons -100 iterations -Last values 

  Etrack5 Dirt4 E-Road Alpine2 Forza 

The total number of times the car exited the road 37 64 64 4 8 

The number of frames spent outside the road 5707 12566 12566 107 15707 

The total distance covered  by the car from the 

beginning of the race 
328.822 375.207 375.207 7572.1 9751.94 

The maximum distance covered by the car from 

the start line along the track line 
303.821 350.21 350.21 3773.52 3942.71 

The damage of the car 1117 1454 1454 24 85 

Total time +1 lap +1 lap +1 lap 9:02:57 6:03:11 

lapses 0/2 0/2 0/2 2/2 1/2 

 

Table 14 shows the results obtained with five output neurons in 100 iterations, and using 

the last values for the weights. On E-Track5, Dirt4 and E-Road, the racing car couldn’t cover more 

than 350 meters because it got stuck frequently and it spent long periods of time out of the track. 

The car also received a high amount of damage. On Alpine2, the car was able to complete the race 

successfully. On both Alpine2 and Forza, the car got out of the track only a few times and received 
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less damage than on the three other tracks. On Forza, the racing car got stuck for a long time in a 

sharp curve and thus it failed to complete the race to the end.  

 

6- ANN with 5 neurons -100 iterations - Best values Model: 

  

Table 15: Results of applying ANN with 5 neurons -100 iterations - Best values 

  Etrack5 Dirt4 E-Road Alpine2 Forza 

The total number of times the car exited the road 24 1 1 0 3 

The number of frames spent outside the road 3938 334 334 0 691 

The total distance covered  by the car from the 

beginning of the race 
1095.82 6545.95 6545.95 7573.58 11595.5 

The maximum distance covered by the car from 

the start line along the track line 
1070.82 3272.9 3272.9 3785.37 5795.3 

The damage of the car 433 40 40 33 0 

Total time +1 lap 6:22:51 6:22:51 8:12:57 11:44:21 

lapses 0/2 2/2 2/2 2/2 2/2 

 

Table 15 shows the results obtained with five output neurons in 100 iterations, and using 

the best values for the weights. On E-Track5, the racing car was able to cover only two thirds of 

the first lapse because it got stuck many times for long periods of time. On this track, the car 

received a medium amount of damage. On the rest of the tracks, the car was able to complete the 

race within acceptable time and the damage was low for all of them. On Forza, the car performed 

the best among other models and it was able to complete the race successfully. 

 

7- ANN with 5 neurons -500 iterations -Last values Model: 

 

Table 16: Results of applying ANN with 5 neurons -500 iterations -Last values 

 Etrack5 Dirt4 E-Road Alpine2 Forza 

The total number of times the car exited the road 36 63 2 2 1 

The number of frames spent outside the road 5530 11506 349 85 28461 

The total distance covered  by the car from the 

beginning of the race 
322.424 626.991 6546.07 7572.76 2771.9 

The maximum distance covered by the car from 

the start line along the track line 
297.425 601.994 3272.80 3785.79 2746.9 

The damage of the car 1096 3097 15 1604 0 

Total time +1 lap +1 laps 8:57:33 9:25:59 +1 lap 

lapses 0/2 0/2 2/2 2/2 0/2 

 

Table 16 shows the results obtained with five output neurons in 500 iterations, and using 

the last values for the weights. The racing car wasn’t able to complete the first lapse since it got 

stuck a lot except on E-road and Alpine2. However, on Alpine2, the car received potentially high 

damage. On E-Road, the racing car received low damage and spent a minor period of time out of 

the track. 
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8- ANN with 5 neurons -500 iterations-Best values Model:  

 

Table 17: Results of applying ANN with 5 neurons -500 iterations-Best values 

 Etrack5 Dirt4 E-Road Alpine2 Forza 

The total number of times the car exited the road 17 1 1 0 6 

The number of frames spent outside the road 2606 181 45 0 2375 

The total distance covered  by the car from the 

beginning of the race 
3268.19 

6546.0

1 
6548.42 7572.28 11595.7 

The maximum distance covered by the car from the 

start line along the track line 
1621.46 

3272.8

5 
3271.6 3786.7 5795.5 

The damage of the car 2514 28 0 0 1 

Total time 4:17:39 6:23:22 5:49:23 10:41:56 12:22:19 

lapses 2/2 2/2 2/2 2/2 2/2 

 

Table 17 shows the results obtained with five output neurons in 500 iterations, and using 

the best values for the weights. The racing car was able to complete the race on all the five tracks. 

On E-track, the car got stuck frequently and it received high damage. On Dirt4, the car got stuck 

only once and it received a low amount of damage. On E-Road, the car also got stuck only once 

but it didn’t receive any damage. On Alpine2, the car performed the best among the tracks using 

the current model and it neither got stuck nor received any damage.  

 

Choosing the best-performance model: 

As we saw in the previous tables, on E-Track on all models, the racing car easily got stuck and it 

received high damage because the data file collected on this track reflects the fact that this track 

features only wide curves that are not very challenging for the driver. Thus, when the car gets 

stuck, it can’t adjust the target angle properly to maintain traveling inside the track, having seen 

only smaller angles.  

On Dirt4 and E-Road, the racing car behaved similarly and such similar behavior is due to 

the fact that both Dirt4 and E-Road have the same properties except the material is different. Dirt4 

is muddy and E-Road is made of asphalt. On both tracks, the racing car spent a long time to get 

back to the track every time it got stuck and this happened with every variation of the ANN 

parameters we have tried, which wastes more time. It completed the race only when the ANN was 

using the best values.  

On Forza, the racing car couldn’t complete the race in most models. Such a failure is due 

to the track shape which contains only sharp turns. Thus, when the car gets stuck in a sharp curve, 

it can't return back properly to the track because the collected data were limited to deal only with 

wider angles than the sharp curves involve.  

On Alpine2, in general, the racing car did its best among all the tracks for all the settings 

of the ANN and it completed the race successfully in every setting. This success is due to the shape 

of the track, which contains many various types of curves. As a result, the ANN is trained better 

with its data file. We can choose Alpine2 as the best track so far. 

After all the experiments, we can nominate Alpine 2 as the ideal track to use with our ANN. 

We can also see that using the data collected from Alpine2 with the model of 5 output neurons 

seems to perform better than the model of 1 output neuron. Additionally, using the best weights 
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seems to work better than using the last weights. The results also show that training the ANN for 

a larger number of iterations doesn’t improve the performance in our case. 100 iterations seems to 

be enough to train the ANN. As Figure 15  shows, the error rate for the 500 iterations for Alpine2 

using the ANN5 with best values (below) doesn’t change over the training time compared to the 

chart of 100 iterations (above):   

 

 

 
 

 

 
 

Figure 15: The rate of the error that resulted from training the ANN 100 times & 500 times 

 

Now, we can choose the model number 6 which is Alpine2-ANN with 5 output neurons-

100 iterations-best weights as the best model to train our ANN with its data in the next subchapter. 
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4.6 Testing the ANN with the New Tracks 

For this part of experiments, we tried to see how well the pilot with the ANN can perform when it 

is trained from the data obtained from one track and then tested on a new track. We used the 

approach that had the best result in the experiments presented in the previous section, which is 

Alpine 2 with ANN5 and 100 training steps and the best weights after training, on all the tracks. 

We trained the ANN with the data file for this track first, then we used it on every track with the 

given settings. Table 18 shows the experimental results of applying the data file of Alpine2 on 

every track. 

 

Table 18: Results of applying data of Alpine2 for training ANN on all of the five tracks 

With ANN 

  Etrack5 Dirt4 E-Road Alpine2 Forza 

The total number of times the car exited the 

road 
0 12 4 0 2 

The number of frames spent outside the road 0 1903 399 0 12820 

The total distance covered  by the car from the 

beginning of the race 
3268.77 6545.82 6547.28 7573.58 5150.39 

The maximum distance covered by the car from 

the start line along the track line 
1634.1 3260.4 3272.19 3785.37 5125.39 

The damage of the car 0 735 0 33 1 

Total time 3:36:25 10:23:57 8:30:35 8:12:57 +1lap 

lapses 2/2 2/2 2/2 2/2 0/2 

Without ANN 

  Etrack5 Dirt4 E-Road Alpine2 Forza 

The total number of times the car exited the 

road 
0 0 0 1 4 

The number of frames spent outside the road 0 0 0 81 1051 

The total distance covered  by the car from the 

beginning of the race 
3267.78 6545.65 6546.05 7572.12 11593.3 

The maximum distance covered by the car from 

the start line along the track line 
1621.04 3260.19 3,272.82 3773.55 5784.09 

The damage of the car 0 0 0 3314 129 

Total time 1:27:10 1:27:10 1:27:10 5:32:39 2:41:36 

lapses 2/2 2/2 2/2 2/2 2/2 

 

On E-track5, the ANN with weights obtained from training the ANN with the data of 

Alpine2 was efficient and the racing car was able to complete the race successfully without any 

damage and within a tolerable time. However, the car spent nearly twice the time that the car spent 

to complete the race on the same track without using the ANN. 

On E-Road and on Dirt4, the racing car got out of the track frequently and it spent a long 

time to return back to the track. As a consequence, it took a longer time to complete the race when 

it using the ANN than the spent time without using the ANN. However, it completed the race 

successfully without any damage on E-road and medium damage on Dirt4. 
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On Alpine2, the racing car used its own data file to train the ANN and it performed very 

well with low damage and without getting out of the track. The car also completed the race within 

an acceptable time, 8:12:57 minutes as compared to 5:32:39 minutes without using the ANN.  

On Forza, the racing car got stuck in a sharp curve and it couldn’t escape from it. Thus, the 

car failed to complete the first lapse. The damage was very low (1 out of 3000). 

In general, the racing car using ANN trained by Alpine2 data file succeeded in reducing the 

damage potentially on all the tracks. It also was successful in correcting the path as soon as the car 

gets out of the track. Furthermore, it can be derived from Table 18 that when the car used the ANN, 

it covered a similar total distance to the same controller on the same track without using the ANN. 

With the ANN, the pilot didn’t cover extra distance larger than 1 meter. This signifies that the 

ANN allows the pilot to be as efficient in terms or trajectory as without using it. This means that 

the ANN has the potential to be efficient on a new track that it has not seen before. 

The results also show the ability of the ANN to learn from Alpine2 because Alpine2 has many 

curves with various angles which makes the ANN able to predict the required target angle for any 

upcoming curve precisely. However, it did fail in predicting the sharp curves, such as the ones in 

Forza, because the Alpine2 track lacks in such sharp curves.  A future direction of research could  

be to add some data points obtained from sharp curves on Forza to the data file extracted from 

Alpine2 for an even better performance.  

 

4.7 Testing the ANN with Dynamic Training  

In order to further enhance the ability of the ANN to adapt to new tracks, we developed the 

Dynamic Training feature presented in section 3.4.1. The purpose of this feature is to train the 

neural network during the race itself (as opposed to beforehand) by adjusting the weights in cases 

where the target angle is overestimated. With this feature, the pilot detects situations where the car 

has either exited the road, or is about to, or is stuck, and reduces the target angle aimed in the 

previous frame by a percentage. Then this new value together with the previous input values are 

used to train the ANN by back-propagation. We tested the controller using the ANN with the 

Dynamic Training mode. Then, we retrieved the results, and we included both results with/without 

using the Dynamic Training feature in Table 19: 

 

Table 19: Results of applying Alpine2 data for training the ANN on all of the five tracks with 

Dynamic Training 

With Dynamic Training 

  Etrack5 Dirt4 E-Road Alpine2 Forza 

The total number of times the car exited the road 0 41 27 9 24 

The number of frames spent outside the road 0 6427 3614 4918 25581 

The total distance covered  by the car from the 

beginning of the race 
3268.48 5059.93 6348.52 3691.49 766.86 

The maximum distance covered by the car from the 

start line along the track line 
1634.24 1774.47 3063.08 3666.49 741.86 

The damage of the car 0 3094 2533 114 1433 

Total time 1:43:34 
04:10:19 

+1lap 

04:37:39 

+1lap 
1lap 1lap 

Lapses 2/2 1/2 1/2 0/2 0/2 
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Without Dynamic Training 

  Etrack5 Dirt4 E-Road Alpine2 Forza 

The total number of times the car exited the road 0 12 4 0 2 

The number of frames spent outside the road 0 1903 399 0 12820 

The total distance covered  by the car from the 

beginning of the race 
3268.77 6545.82 6547.28 7573.58 5150.39 

The maximum distance covered by the car from the 

start line along the track line 
1634.1 3260.4 3272.19 3785.37 5125.39 

The damage of the car 0 735 0 33 1 

Total time 3:36:25 10:23:57 8:30:35 8:12:57 +1lap 

Lapses 2/2 2/2 2/2 2/2 0/2 

 

The results in Table 19 show that the car with Dynamic Training was able to complete the 

race successfully only on E-track5 and it completed the race within a record time, half the time of 

the same race’s settings without using Dynamic Training feature. On the other hand, the 

performance of the controller on the rest of the tracks using Dynamic Training was not as good as 

the one without using Dynamic Training. 

On Dirt4 and E-Road, the racing car got stuck a lot and it spent long periods of time out of 

the track which caused the car to lose the race as the game’s rules state [10]. One of the rules, 

which was applied here, states that there is a maximum amount of time allocated to the race, as 

well as a maximum amount of allowed damage and of available fuel.  Thus, the car failed to 

complete the second lapse, and also it received high damage. 

On Alpine2, the car also couldn’t complete the first lapse because it got stuck a lot which 

caused it to be disqualified from completing the race based on the rules of the game. The car also 

received higher damage with Dynamic Training feature than without using it.  

On Forza, when the racing car used Dynamic Training, it got out of the track a lot, it spent 

long time out of the track and it received high damage, which also prevented the car from 

completing the first lapse.  

Generally, the results show that using Dynamic Training model in the current state doesn't 

help the car to perform better than the previous model except for E-track5 where it completed the 

race in less time than without using Dynamic Training feature. Thus, the success on E-Track5 

suggests that this feature could be useful with a better refinement of the equations used.  

We attempted this approach and it has not improved the performance except for one track. 

This strategy has the potential to help the ANN outperform the procedural methods, but it isn't yet 

efficient enough to achieve this, and thus it is left for future research.  

 

4.8 Testing with Hill Climbing (HC)  

In order to enhance the Gazelle’s performance, we added the Hill Climbing algorithm presented 

in section 3.6. This algorithm adjusts several parameters that control the pilot. It will increase the 

maximal speed when no damage has been registered to the car during the first lapse of the race. 

This way the pilot determines if the track is too easy for the current settings and increases the speed 

to achieve a better time in the second lapse.  Otherwise, the speed is reduced to a safer speed value 

every time the car gets out of the track or registers damage without another car being close by. The 

car might also be damaged by collision with another car, but that situation is not the concern of 

this particular module. Thus, this function also detects when the current settings for the speed are 
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too high for the track, and tunes them down to reduce the potential damage and to avoid exiting 

the track. Table 20 shows the results of applying the HC method to the procedural Gazelle system 

with the maximum speed set to 150km/h to begin with.  

 

Table 20: Results of applying Hill Climbing (HC) to the Gazelle on all of the five tracks 

With HC 

 E-Track5 Dirt4 E-Road Alpine2 Forza 

The total number of times the car exited the road 0 4 0 0 10 

The number of frames spent outside the road 0 325 0 0 24502 

The total distance covered  by the car from the 

beginning of the race 
3268.81 6546.77 6547.4 7573.49 7353.02 

The maximum distance covered by the car from 

the start line along the track line 
1621.42 3260.39 3260.2 3773.35 5783.95 

The damage of the car 0 611 0 586 1804 

Total time 
 

02:10:31 
05:05:58 2:08:37 08:51:17 +1 lap 

Lapses 2/2 2/2 2/2 2/2 1/2 

Without HC 

 E-Track5 Dirt4 E-Road Alpine2 Forza 

The total number of times the car exited the road 0 0 0 1 4 

The number of frames spent outside the road 0 0 0 81 1051 

The total distance covered  by the car from the 

beginning of the race 
3267.78 6545.65 6546.05 7572.12 11593.3 

The maximum distance covered by the car from 

the start line along the track line 
1621.04 3260.19 3,272.82 3773.55 5784.09 

The damage of the car 0 0 0 3314 129 

Total time 1:27:10 1:27:10 1:27:10 5:32:39 2:41:36 

lapses 2/2 2/2 2/2 2/2 2/2 

 

As Table 20 shows, on E-Track5 and E-Road, applying the HC method to the Gazelle 

system did not have a positive effect. The pilot took an extra half a minute to complete the race 

with the HC. On Dirt4, the results show that the car received a medium amount of damage with 

the HC, which is worse than the results without applying the HC, and it took about three times 

more time than without the HC. 

On Alpine2, the results are satisfying as the HC succeeded in reducing the damage from a 

very high level to a medium level, and in preventing the car from exiting the road. Such success is 

due to the ability of HC to adopt the required safe speed to pass the curves safely. Yet, the pilot 

took a longer time to complete the race with the HC than in the same race’s settings without the 

HC.  

On Forza, the car failed to complete the race with the HC since it was stuck out of the road 

frequently which caused higher damage than the resulted damage without applying the HC. 



47 

 

However, the pilot was able to complete the race without the HC within an excellent time, 2:41:36 

minutes.  

From the presented results, we can conclude that the Hill Climbing algorithm helped the 

Gazelle to adjust the speed in the roads with a lot of curves, such as on Alpine2. However, it failed 

to handle the sharp turns, such as the ones on Forza, and it took longer time to complete the race 

with the new speed values after applying the HC algorithm than with the original speed values 

without applying the HC. 

We performed the same experiments on EPIC with and without applying the HC as Table 

21 shows the results. 

 

Table 21: Results of applying Hill Climbing (HC) to EPIC on all of the five tracks 

With HC 

 E-Track5 Dirt4 E-Road Alpine2 Forza 

The total number of times the car exited the road 0 0 0 0 0 

The number of frames spent outside the road 0 0 0 0 0 

The total distance covered  by the car from the 

beginning of the race 
3268.55 6545.89 6545.31 7572.46 11601.3 

The maximum distance covered by the car from 

the start line along the track line 
1621.42 3260.37 3260.25 3773.39 5783.83 

The damage of the car 0 0 0 473 0 

Total time 02:09:04 04:17:28 04:21:17 6:34:29 06:05:19 

Lapses 2/2 2/2 2/2 2/2 2/2 

Without HC 

 E-Track5 Dirt4 E-Road Alpine2 Forza 

The total number of times the car exited the road 0 0 0 0 21 

The number of frames spent outside the road 0 0 0 0 2186 

The total distance covered  by the car from the 

beginning of the race 
3268.53 6545.71 6546.23 7574.1 3863.74 

The maximum distance covered by the car from 

the start line along the track line 
1621.31 3260.37 3260.01 3773.35 5783.73 

The damage of the car 0 0 0 0 4649 

Total time 2:34:00 5:07:27 5:09:14 6:44:49 

Failed 

to 

complete 

Lapses 2/2 2/2 2/2 2/2 0 

 

With applying the HC on EPIC, the damage was reduced to zero and the pilot took less 

time to complete the race on all the tracks. Also, the racing car on Forza was able to complete the 

race within a good time, 06:05:19 minutes, as compared to the same settings on the same track 

without applying the HC where the car failed to complete the first lapse. 

 In general, the results of applying the HC to EPIC are promising because they show the 

ability of the HC to adopt a safe speed value which outcomes less damage and less time.  

After examining all the results of applying the HC to the Gazelle and to EPIC, we can 

conclude that the HC worked better for EPIC than it works for the Gazelle and the HC with EPIC 

leads to a better performance by adjusting the speed to a safe speed value. 



48 

 

5. Conclusions 
In the thesis, we hoped to accomplish a well-developed and efficient algorithm for Gazelle. Such 

an algorithm can be improved by the learning methods using neural networks and Hill Climbing.  

We aimed to lead the racing car to achieve an efficient path and an efficient speed and to minimize 

the damage caused either by opponents or by getting out of the track. For this, we used procedural 

and learning methods to enable the controller to make a good decision in every frame of the race.  

As part of this project, we participated in an international competition (GECCO-13). The 

procedural Gazelle code was submitted to a TORCS competition where it was accepted and 

qualified to be a part of the final race. AUTOPIA was the winner of GECCO-2013 SCR whereas 

our car achieved the eighth rank as the champion’s organizers announced [23]. Table 22 shows a 

summary of the championship's results. 

 

Table 22: Results summary for GECCO-13 [23] 

Competitor Alsoujlak Arraias Sancassa Total 

AUTOPIA 12 13 13 38 

MrRacer 9 5.5 6 20.5 

ICER-IDDFS 6 5 8 19 

GRNDriver 5 5.5 4 14.5 

SnakeOil 3 7 3.5 13.5 

Presto AI 3 1 5 9 

EVOR 3 4 1 8 

GAZELLE 1.5 3 2 6.5 

 

Our controller was submitted before developing the learning methods, thus the damage was 

high, which affected on the performance negatively, and the pilot achieved lower scores for the 

tracks: Alsoujalk, Arraias, and Sancassa. 

This participation inspired us to continue developing our controller to be a part of the next 

year’s competitions for simulated racing car. For this, we refined the procedural methods, added 

learning components, and added an opponent modifier module. Our ongoing efforts to develop the 

Gazelle controller aimed to predict an appropriate path and speed for the racing car in each frame 

of the race based on the available information about the car's state and based on the knowledge 

that the car has built using the learning methods. For this, we used both procedural methods and a 

neural network. We hoped that using neural networks could lead the controller to derive more 

accurate equations based on previous data acquired during the training process. We also expected 

that the more the networks are trained, the more precisely they would predict the driving 

information. We also used a Hill Climbing method to refine the learning process. 

In this work, we implemented several procedural methods to improve the performance of 

the Gazelle. We developed the Target Direction Unit to predict the target angle more precisely. 

We also developed the Target Speed Unit to determine an appropriate speed based on the target 

angle, with the goal to achieve the maximum allowed speed when the path is almost straight, and 

a safe speed when the pilot is taking curves. We also added the Opponent Adjuster for handling 

the opponents if they violate chosen tolerance values of closeness as determined by the opponent 
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sensors in each direction, by modifying the speed value and the steering angle to avoid the 

collision. 

In addition to the procedural units, we added the Trouble Spot Register which avoids the 

accidents caused by errors in predicting the right steering angle that causes the car to get out of the 

track. We also used several learning methods to optimize the performance of the procedural 

Gazelle by enabling the controller to learn during the race using learning algorithms. We employed 

two main learning algorithms: Neural Networks and Hill Climbing. We substituted the procedural 

Target Direction Unit with an ANN system. The ANN calculates the appropriate target angle after 

training the ANN with the data file extracted while using the procedural units. We also enhanced 

the ANN by the Dynamic Training feature for adjusting the weights of the ANN during the race 

in cases where the target angle is overestimated. We also used the Hill Climbing algorithm to 

adjust the speed of the car to reach the maximum safe value during the race. 

The results show that using the ANN helped to avoid the damage on some tracks and helped 

to minimize the damage on others. The results also show that the ANN was able to learn from 

Alpine2 the best because it has many curves with various angles. This allows the ANN to predict 

the required target angle for any upcoming curve precisely. However, the ANN needs more data 

acquired on sharp curves to enable the ANN to predict the accurate required target angle for sharp 

curves, such as the ones on Forza, and to return back to the track with a sharp steering angle when 

the racing car gets out of the track. The results also show that using the Dynamic Training model 

to enhance the performance of the ANN has not improved the performance except for E-track5 

and refining the used equations more is needed for a better performance. The results also show 

that the Hill Climbing algorithm (HC) improved the car’s performance in situations where the road 

has a lot of curves, such as the Alpine2 track. The HC helped to reduce the damage by adopting 

safe speed values in the curves. However, the HC made the pilot take a longer time to finish the 

race with a lower amount of damage than the required time without applying the HC.  

After all these experiments, we can conclude that the Gazelle is an improvement over EPIC 

because the Gazelle was able to handle the opponents efficiently and it succeeded in avoiding the 

damage caused either by colliding with other opponents or by hitting the hard shoulders on the 

side of the road. Also, we can conclude that using the ANN helped the Gazelle to behave more 

efficiently on any new tracks of any type or any shape. Even though, the Gazelle took a longer 

time to complete the race with the ANN as compared to the procedural methods with the same 

settings without using the ANN, we can adopt a higher value for the maximum speed for the next 

competition. Additionally, the HC algorithm was useful in situations where the road has a lot of 

curves, such as Alpine2, since it helped to adopt safe speed values to pass these curves without 

causing any damage. Yet, the HC took extra time as a result of adopting variant speed values.  

Working with such a project helped us to improve our skills with programming using C++. It 

also introduced us to game programing and new learning methods such as neural networks and 

Hill Climbing. This thesis fulfilled our passion to make the Gazelle system a self-training 

controller and we hope to achieve a higher ranking in the next international championship. We 

will continue developing on this project to submit it to the same competition this year. 
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