
A506	/	C201	Computer	Programming	II	
Placement	Exam	Sample	Questions	

	
For	each	of	the	following,	choose	the	most	appropriate	answer	(2pts	each).	
	
_____ 1. Which of the following functions is causing a temporary object to be created?
 class Date {...};

a. Date Copy (Date &data);
b. void Add(Date &to, Date from);
c. void Add(Date &to, const Date from);
d. All of the above

_____ 2. A function is overloaded in the derived class when
a. a function from the base class is called on an object of the derived class;
b. the derived class implements a function with the same name and parameters as the

base class
c. the derived class implements a function with the same name
d. none of the above

_____ 3. Which of the following applies to a class derived from more than one class?
a. multiple inheritance
b. the compiler doesn't accept that
c. simple inheritance
d. polymorphism

_____ 4. When do we need to have reference parameters for a function?
a. When the function needs to change the value of that parameter.
b. When the function needs to return more than one value.
c. When we don't want the function to make a local copy of an object.
d. All of the above.

_____ 5. Which of the following operators should not be declared as friend?
a. >>
b. <<
c. +=
d. +

	
	
	 	

6.	Write	a	function	that	will	accept	an	integer	array,	we	can	assume	global	constant	of		
MAX	=	5,	and	then	pass	back	the	average	of	the	numbers	and	the	first	number	in	the	array.		
The	function	cannot	use	reference	parameters	to	pass	any	thing	back,	so	you	need	to	use	
pointers.		Do	not	need	to	comment	the	function	or	the	code.	Also	write	the	bit	of	the	main	
function	that	shows	how	the	function	is	called.	
	
	

					main	here	 	 	 	 	 	 	 function	here	
	

#include <iostream>
using namespace std;
const int MAX = 5;
void main()
{
 float Average; float First;
 float N[MAX] = {5,6,8,3,6};

}
	
	
	
7.	Draw	the	linked	structure	that	results	from	executing	the	code	segment	below.		Do	not	
include	Temp	in	your	final	drawing.		
	
struct Node
{
 char ch;
 Node *link;
};

										L	
	
			

Node *L, *temp;
L = new Node;
L->ch = '2';
L->link = new Node;
L->link->ch = '3';
temp = new Node;
temp->ch = '1';
L->link->link = temp;
temp->link = L;
	
8.	In	the	same	structure,	implement	the	following	function:		
	
// Finds the last node and returns a pointer to it.
// If the list is empty, it returns NULL.
Node *Last(Node *front)
{

9.	Write	a	program	that	will	accept	command	line	arguments.	If	there	are	no	arguments,	
other	than	the	invoking	file	name,	then	return	0.	If	there	is	one	argument	after	the	file	name,	
return	the	square	of	this	integer.	We	will	assume	that	there	will	be	no	more	than	this	
number	of	arguments	and	also	that	the	second	argument	will	be	a	character	in	the	range	‘0’	
to	‘9’.	
	
	
10.		What	happens	when	you	dereference	a	NULL	pointer?		
	
	
11.	Assume	that	the	pointer	“a”	was	allocated	the	following	way.	Write	an	instruction	that	
deallocates	it.		
float *a;
a = new float[10];
	
	
12.	In	the	following	recursive	function,	identify	the	base	case	and	the	recursive	call.		
long factorial(int n)
{
 if (n < 2)
 return 1;
 else
 return n * factorial(n-1);
}
	
	
13.	Complete	the	following	program,	so	that	the	program	could	display	the	required	results.		
	
Note:	You	need	to	allocate	space	if	needed.	
	
#include <iostream>
#include <string>
using namespace std;

class Book
{
private:
 string title; //every book has a title
 int editions;
 double * price; //every book has a price

public:
 Book(string, double); // a single edition, one price
 Book(string, double*, int count); // multiple editions
 ~Book();
 string getTitle();
 double getPrice(int which=0);
 double getLowestPrice();
 virtual double get_total_cost()=0;
};

// Constructor of Book, assign parameters aTitle and aPrice to Book
// attributes title and price, respectively. Single edition.
Book::Book(string aTitle, double aPrice)
{
 // Your code goes here

}

// Constructor of Book with multiple editions with several prices.
Book::Book(string aTitle, double *prices, int count)
{
 // Your code goes here

}

//destructor of Book (1 point)
Book::~Book()
{
 // Your code goes here
}

string Book::getTitle()
{
 return title;
}

double Book::getPrice(int which)
{
 if (0 <= which && which < editions)

return price[which];
 else
 exit(1); // quit the program with an error message
}

double Book::getLowestPrice()
{
 // Your code goes here

}

	

Answers

1. d
2. b
3. a
4. d
5. c

6.
					main	here function	here
#include <iostream>
using namespace std;
const int MAX = 5;
void main()
{ float average; float first;
 float N[MAX] = {5,6,8,3,6};

 ComputeAverage(N, &average,
 &first);
}

void ComputeAverage(int a[],
 int *averagePtr,
 int firstPtr)
{
 float sum = 0;
 for (int i=0; i<MAX; i++)
 sum += a[i];
 *averagePtr = sum/MAX;
 *firstPtr = a[0];
}

	
7.		

	L	 	

8.		
Node *Last(Node *front)
{
 if (front == NULL)
 return NULL;
 Node *lookup = front;
 while (lookup->link) {
 front = front->link;
 return front;
}

9.
int main(int argc, char **argv)
{
 if (argc == 1)
 return 0;
 else
 {
 int n = argv[1][0]-‘0’;
 return n*n;
 }
}

10. You get a runtime error or segmentation fault or memory access violation, depending on the
operating system.

11. delete[] a;

12.		
long factorial(int n)
{
 if (n < 2) // ß base case
 return 1;
 else
 return n * factorial(n-1);
} // ^recursive call

13.
Book::Book(string aTitle, double aPrice)
{
 title = aTitle;
 editions = 1;
 price = new double;
 *price = aPrice;
}

Book::Book(string aTitle, double *prices, int count)
{
 title = aTitle;
 if (count > 0)

{
 editions = count;
 price = new double[count];
 for (int i=0; i<count; i++)
 price[i] = prices[i];
 }
}

Book::~Book()
{
 if (editions > 0)
 delete[] price;
}

double Book::getLowestPrice()
{
 if (editions == 0)
 return 0;
 double minPrice = price[0];
 for (int i=1; i<editions; i++)
 if (price[i] < minPrice)
 minPrice = price[i];
 return minPrice;
}

