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1. INTRODUCTION 
The idea behind this project was to create a simulation 

of the evolution of life in CUDA.  In this simulation the 
creatures are individual entities that can interact with the 
world.  Each has its own set of state information and DNA 
representing it.  Through this DNA the creatures evolve via 
division and mating.  The evolution of the DNA during 
reproduction utilizes crossover and mutation but does not 
have any sort of fitness function consideration.  Each 
creature itself chooses when and how to reproduce, thus the 
creatures that live longer and/or reproduce faster will tend to 
survive better or be more fit.  The creatures control their 
actions and interactions with the world via a recurrent neural 
network.  The structure and weights of this network are 
encoded into the DNA as well as everything else about the 
creature. 

The structure of this report is as follows. It starts with an 
overview of CUDA and the different facets of it that need to 
be considered when programing in CUDA.  This is followed 
by a detailed description of the evolutionary model used in 
the simulation.  It continues into the general structure of the 
data used to represent the simulation.  The implementation 
of the simulation follows and covers both the high and low 
levels of the code.  This section also discusses some of the 
design considerations with respect to the specific pieces of 
code being described.  Lastly, the results of running the 
simulation will be discussed and final conclusions will be 
made. 

2. CUDA DESIGN CONSIDERATIONS 
“CUDA™ is a parallel computing platform and 

programming model that enables dramatic increases in 
computing performance by harnessing the power of the 
graphics processing unit (GPU)” [1].  CUDA has the 
potential to greatly boost the throughput of an algorithm but 
typically necessities a significant redesign of the algorithm 
to realize this improvement.  The reason behind this is 
partially due to the difference between sequential and 
parallel algorithms but more so to the very architecture of 
the GPU that needs consideration.  In this project, only four 
facets of the CUDA architecture needed to be considered: 
CPU-GPU Memory Transfer, Global-Block Memory 
Transfer, Memory Coalescing and Warp Divergence. 

The structure of the GPU consists of the shared outer 
memory and several inner processing units that each has 
their own memory, as seen in Figure 1.  Each of these 
processing units can process tasks completely independently 
of the other units.  Internal to each unit, multiple threads can 
be processed in parallel.  The only limitation in this case is 
that each thread has to do the same thing but can do it on 
different data.  This is referred to as SIMD (Single 
Instruction Multiple Data).  Typically, the processing units 
also operate in a SIMD manner but do not have to.  With 
more recent versions of CUDA, the GPU can have up to two 
different threads running in the CPU at the same time.  The 
second thread in this case is almost always used to transfer 
data to and from the GPU while the main thread is 
processing the active kernel. 

2.1. CPU-GPU Memory Transfer 

CPU-GPU Memory Transfer refers to the time needed to 
transfer data between the GPU and CPU.  With the 
exception of disk access, this is likely to be the lowest 
bandwidth pipe in the application.  The issue is that the data 
must be sent over the PCI-E slot from the CPU to the GPU.  
This transfer takes a significant amount of time relative to 
the data transfers within the CPU or GPU.  In response to 
this, data transfers between the CPU and GPU should be 
minimized.  This project was designed from the beginning 
to keep as much of the simulation as possible internal to the 
GPU and to pay the majority of the transfer costs upfront 
during the simulation’s initialization.  

2.2. CUDA Memory Structure 

The internal structure of the CUDA GPU is divided into 
many distinct parts.  Only a logical representation will be 
presented here for the sake of understanding design 
decisions, as opposed to a more detailed physical 
description.  This logical representation is illustrated in 
Figure 1.  In the Outer Layer of the GPU memory, the layer 
accessible to the CPU, there are three memory Blocks: 
Global, Constant and Texture.  Global Memory is the 
primary location to store data in the CPU.  For this project 
nearly all simulation data is stored in Global Memory.  In 
this report, Global Memory will also be referred to as 
Global.  Global Memory is by far the largest Block of 
memory in the GPU, 2GB in this project’s hardware, and is 
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writable from both the CPU and GPU.  The price of having 
all this space is the limitation of only allowing operations to 
be performed at specific indexes.  For this project the index 
period was 512 bytes.  This limitation combined with the 
relatively slow transfer rate between Outer and Inner 
memory, is ultimately the source of the Global-Block 
Memory Transfer design consideration that will be 
discussed later.   

Constant Memory is much smaller than Global, 64KB in 
this project’s hardware, and can only be written from the 
CPU.  Its advantage is that it can be efficiently accessed at a 
per word level, 4 bytes, as opposed to Global’s specific 

indexes.  The other benefit is that within a Block, to be 
described later, only the first access of a constant value 
requires an Outer Memory operation.  Afterwards the 
Constant variable will be accessible at register speeds.  One 
limitation of Constant Memory is that when defined, it only 
has a scope of the source file in which it was defined.  Since 
this application has numerous CUDA methods (kernels) 
declared in individual files, many of the constant variables 
had to be defined multiple times for each kernel that needed 
them.  This is ultimately a limitation of CUDA and simply 
had to be worked around.  This was not a problem as there 

Figure 1: CUDA Memory Model [2] 
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was more than enough room in Constant for all needed 
copies of the constant variables.   

Texture Memory is the last of the Outer Memory that is 
externally visible but was not used in this project and will 
thus not be described.  The Inner structure of the GPU is 
first divided into Blocks.  A Block represents both a logical 
division of the GPU’s Inter Memory and of its processing 
power.  When a kernel is executed, a copy of the kernel is 
given to each Block to run.  Each Block has a pool of 
Threads that it uses to process the kernel.  The CUDA API 
makes available several values to distinguish one Block and 
Thread from another from within the Block or Thread itself.  
Each Block has its own Shared Memory that is only 
accessible to the Threads within that Block.  In older 
versions of CUDA compatible GPUs this was 16KB, for 
this project, 48KB ware available.  The benefit of Shared 
Memory is that it provides much faster access times than 
Global, though not quite register speeds.  The design 
consequence of this is that some sets of data could be used 
more efficiently if first transferred in their entirety to Shared 
Memory.  This was typically done for any values that would 
be accessed multiple times within the Block to avoid 
retrieving the same value from Global many times.  The 
other benefits of this method are described later. 

The last two sections of Memory are the Registers and 
Local Memory.  These two sets of memory are only 
accessible to specific Threads and are used for any of the 
locally scoped variables in the kernels.  The difference 
between them is that the Registers are located close to the 
ALUs (Arithmetic Logic Unit) and are thus the fastest to 
access, while the Local Memory is part of the Outer 
Memory and slow to access.  The reason for this is that the 
Local Memory is merely a backup for the registers.  When a 
kernel has used all its registers, the Local Memory will 
instead be used to define any addition registers as needed.  
Care should be taken to avoid this, since it effectively 
converts the fastest memory access in the GPU into the 
slowest.  In this report they will also be collectively referred 
to as Local since one is merely a backup of the other. 

2.3. Global-Block Memory Transfer 

As was mentioned previously, the access rates of the 
Outer Memory within the GPU are relatively slow 
compared to Shared and Local (Registers).  In addition, 
Global can only be accessed at specific indexes.  These 
aspects combined lead to the Global-Block Memory 
Transfer facet of CUDA that needs to be considered.  
Operations on Global memory can only happen on chunks 
of memory, 512B.  This means any read or write operation 
must begin and end on a chunk boundary.  While Global 
operations are possible off these indexes, additional 
operations have to be done in the background to fulfill them.  
What happens is that the entire chunk where the operation 
begins or ends is transferred in addition to the actual data 
requested.  In both directions, the cache is used to convert 

the full chunks to and from the actual data of the operation.  
This leads to both wasted transfers and added processing 
time in the cache.   

The remedy to this is to use pitching.  When an array of 
data is declared, it always stars at the beginning of a chunk.  
When dealing with larger arrays of data, it is common to 
divide them up between the Blocks, for example by the rows 
of an array.  The problem is that the data given to each 
Block most likely does not begin on a chunk boundary, 
which leads to longer access times.  What pitching does is 
pad the end of each section of data with extra memory to 
fully fill the chunk.  This allows each section to begin at a 
boundary and improves access time.  In this project this 
method is used mainly when arrays of data are needed by 
the kernel.  It is not used when single values are needed by 
the kernel. 

The last aspect to consider is the situation when Threads 
need to access data in a non-deterministic way.  Meaning, 
when the data needed is not known until the kernel actually 
runs and can change from run to run.  In this project 
specifically, this mainly happens when the data itself 
determines what additional data is needed.  This leads into 
the last benefit of transferring arrays of data from Global to 
Shared.  Pre-reading the data needed into Shared allows the 
Global operations to begin on a chunk boundary and be 
carried out in the least number of operations, as opposed to 
accessing each value individually at some unknown location 
in the chunk.  This method is also used in the reverse case 
where Shared is used to collect all the results from the Block 
before copying them all back to Global together. 

2.4. Memory Coalescing 

There are two sides to the task of transferring data 
between Global and the Blocks.  Global’s side of the 
equation was just presented but Block’s side has its own 
considerations.  These considerations have more to deal 
with how the Blocks process their Threads.  In a Block the 
Threads are processed in Warps of 32 continuous sequential 
Threads.  Logically speaking, the Threads of a Warp are 
executed in parallel.  While a kernel is running, the Warps 
of the Blocks are processed as they become ready for 
processing.  The implication of this is that 32 words can be 
effectively transferred at the same time.  The GPU will 
actually try and merge Global operations within a Warp to 
utilize this ability.  This merging of operations is known as 
Memory Coalescing.  Without going into too much detail, 
the GPU will watch for continuous sequentially numbered 
Threads within a Warp requesting operations on continuous 
sequential locations in Global.  When it sees this, it will 
combine the operations into as few Global operations as 
possible and feed each value to the appropriate Thread via 
the cache.  This behavior works the exact some way in 
reverse and is typically used to copy results that have been 
gathering in Shared back to Global.  The effect on design is 
mainly in how arrays are transferred between Global and 
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Shared.  The technique is to use a loop that iterates by the 
Thread width (total Threads in a Block).  Each Thread 
transfers the value in the array equivalent to its Thread ID 
up to the number of values to be transferred.  This way the 
transfer between Global and Shared can be coalesced. 

2.5. Warp Divergence 

The last aspect of the CUDA architecture to consider is 
Warp Divergence.  As was mentioned, Warps are groups of 
32 continuous sequentially numbered Threads that run in 
parallel.  What was not mentioned is that the Warp can only 
be doing one operation at a time.  In other words, every 
Thread in a Warp has to be doing the same operation at the 
same time, such as an addition or multiplication.  On the 
other hand, the data being operated on does not need to be 
the same and is typically not the same outside of flow 
control.  This system works great until you reach a flow 
control statement (i.e. if, for, while, etc.)  The problem with 
flow control statements is they can send the individual 
Threads down different execution paths.  The way this is 
handled is the individual paths are processed in sequence 
until the end of the section that divided the flow, for 
example the ‘}’ in C++.  At this point the Threads are 
brought back in order and continue to run in parallel.  The 
branching of these Threads is called Warp Divergence. 

The design consequence of Warp Divergence is mostly 
to be aware of it and limit the branching of the code.  If it is 
unavoidable, then it is best to keep the divergent sections of 
code short.  One thing to clarify is the difference between a 
diverged Thread and an inactive Thread.  An inactive 
Thread is a Thread that either has no work and is waiting for 
the other Threads to catch up to it or a Thread that has 
finished processing of the kernel.  The most common 
situation when this happens is when a Thread is not needed 
for the current operation.  In this case the Thread just sits 
inactive until it is needed again.  An inactive Thread does 
not harm the performance of the other Threads and is a 
normal part of kernel execution.  In some cases the problem 
might lend itself to a Warp level division of labor.  In this 
case the divergent flows of the kernel each get their own 
Warp on which to process.  This way the individual Warps 
do not diverge while the flows between the Warps do.  This 
technique is slightly more difficult to implement and in this 
project at least, was only practical for one of the data 
structures.  

3. EVOLUTIONARY MODEL 
The creatures in this simulation can best be described as 

ants in the sense of the ant colony model [3].  Each creature 
has a recurrent neural network that controls its individual 
behavior each cycle.  These creatures can interact with the 
environment but cannot interact with each other beyond 
breeding.  Further creature to creature interaction was 
delegated to future work.  This simulation follows an 
evolutionary algorithm where the population of the creatures 

is not of fixed size and can grow and shrink as creatures die 
and reproduce [4] [5].  The creatures themselves are 
represented as DNA sequences.  These sequences encode all 
the parameters defining the creature.  With respect to the 
recurrent neural network, both the weights and the structure 
of the network are encoded [6] [7].  The creatures in this 
model actively choose when to breed and can choose 
between division or duplication and mating when they do.  
When mating, a bounded two point crossover is used on the 
DNA segments [8] [9].  In addition to crossover, Hill-
climbing is used in the form of mutation for both operations.  
When performing these operations, the DNA segments are 
considered to be the smallest divisible units of the DNA 
sequence.  These indivisible DNA segments are also known 
as genes.  This means that no operation to the DNA is 
allowed to split a DNA segment or produce a partial 
segment.   

The method of parallelization for this simulation is multi 
leveled to match the structure of CUDA.  CUDA can divide 
the problem into at least three levels of parallelization: 
Block, Warp and Thread.  For most of the operations in the 
simulation only two layers of parallelization can be 
achieved.  For operations relating directly to the creatures, 
such as deciding what to do, the Block level of division is 
the individual creatures and the Thread level is the 
individual calculations.  Warp level division is only used 
when the operation can be divided three ways, which rarely 
happens.  The below sections will go into more detail about 
the world and the creatures that live in it. 

3.1. World Model 

The world is represented as a space containing varying 
quantities of energy.  This space is defined via three primary 
constants.  These three values are effectively natural 
constants of this world.  The first is the dimensionality of 
the world.  The world can have as few as two spatial 
dimensions and as many as the hardware can support.  The 
next constants are the number of energy types and energy 
frequencies which describe the different types and 
frequencies of energy available.  The energy contained in 
the world has both of type and frequency and is referred to 
as Radiant energy.  This energy symbolizes various 
resources available in the world that the creatures depend on 
for survival. 

The space in the world is defined both in a discrete and a 
continuous manner.  To clarify, discrete uses zero to max 
integers to represent specific places in the world while 
continuous uses zero to max reals to represent specific 
places in the world.  Places in the world are referred to as 
Locations when using discrete numbers and Positions when 
using continuous numbers.  There are fundamentally two 
types of interaction with the dimensions of the world, 
energy and physics.  Physics deals with the movement of 
the creatures and uses the continuous representation of the 
world.  Energy on the other hand must use the discrete 
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representation since it is infeasible to model the energy map 
in a continuous manner.  Every Location in the energy map 
thus has a distinct quantity of energy at that specific 
Location.  Other parts of the model dealing with energy 
continue to use the discrete representation. 

Energy type is used to represent the difference between 
say light, sound and chemical energies.  Frequency on the 
other hand is analogous to the different frequencies of light 
or sound.  The energy in the energy map is considered 
transient energy or Radiant energy.  Radiant energy is the 
primary thing the creatures interact with in the world.  
Creatures can actively choose to sense different type-
frequencies of energy.  In this manner energy types 
represent all the senses the creature has, for example sight, 
smelling, hearing, etc.  The creatures can also actively 
choose to absorb and store different energy type-
frequencies.  Within the creatures, energy does not have a 
frequency associated with it.  Frequency is only used when 
dealing with the radiant energy.  This stored energy is what 
the creature uses to perform all its actions and maintain its 
neural network. 

One of the problems identified early in the design stage 
was the issue of how to persist the creature’s impact on the 
world since radiant energy is naturally transitory.  In other 
words, it would reset to zero between cycles.  The original 
plan was to implement a ground concept to store energy in 
the world. Due to time constraints this was not implemented 
but a simplified method was used instead.  The alternate 
method was to use a percent rollover of the radiant energy 
between cycles to persist the effects of the creatures.  The 
effects of the creatures are primarily the absorption of 
energy from the world.  This adds a disadvantage to 
absorbing energy in an inefficient manner as the creatures 
could starve from wasting energy. 

3.2. Creature Model 

Contained within the world is a population of Creatures.  
The size of this population is not fixed and can change 
overtime as different factors affect birth and death rates.  
Due to hardware limitations this population is capped at 
some hard limit.  The ideal case for this population is to 
have it stay relatively stable at some sub max value.   

The creatures are primarily a recurrent neural network.  
This recurrent neural network controls all behaviors of the 
creature via actions that can be defined on each node.  These 
actions include things like moving and feeding but also 
extend to sensing the environment.  Via the sensing actions 
the creature can see the energy levels of specific type-
frequencies in a region.  Most actions also apply to specific 
regions that are part of the creature definition. 

Regions are specific to a creature and are defined 
relative to the creature’s location.  They use a signed 
discrete representation of the dimensions of the world.  
Since the regions move with the creature, they can be 
partially or completely outside the valid dimensions of the 

world.  When this happens the invalid sections of the region 
are ignored the region is truncated to fit in the valid world 
dimensions.   

The fundamental parameters that describe a creature’s 
physical behavior are stored energy and momentum.  Stored 
energy is the resource that creatures use to preform actions 
and maintain their neural network.   It is also used to 
calculate the creature’s mass and radius.  Momentum is 
fundamentally mass times velocity and is stored instead of 
velocity because it is not dependent on mass.  In physics 
momentum is preserved, meaning the total momentum of a 
system will stay the same in the absence of an outside force.  
This way the mass (stored energy) of the creature can be 
changed without having to recalculate the velocity every 
time. 

The motion of creatures is fundamentally determined by 
dividing their momentum by their mass to derive their 
change in position.  Changes in their motion are thus 
directly related to their momentum and mass.  Changes in 
mass only have the effect of amplifying or dampening 
motion so will not be discussed in detail.   

As for changing momentum, there are five different 
factors that will affect it.  Firstly the creature can choose to 
move by converting stored energy into kinetic energy and in 
turn into momentum.  This choice is an action and is 
activated by the neural network.  The second and third ways 
are via collisions with other creatures and with the 
boundaries of the world.  Collisions in this system are 
modeled as simple directional springs to improve stability 
and allow the creatures to overlap.  Additionally, collisions 
damage the creatures participating in them in a manner that 
is relative to the impulse applied.  Damage is a reduction in 
stored energy.  The last two factors are drag and friction 
which act to dampen motion. 

All creatures in this model also have a DNA 
representation.  This DNA sequence consists of segments 
containing four values each that map to both specific 
attributes of specific nodes or regions and to the general 
information about the creature.  All facets of the creature 
can be encoded into the DNA.  Thus both the weights and 
the architecture of the neural network used to control the 
creature are represented in the DNA.  For the most part, 
segment order in this sequence does not matter since each 
segment includes the ID of the component it belongs to.  
Where it does matter is when you have two segments setting 
the same value.  In this case the segment later in the DNA 
sequence overwrites the earlier ones.  Lastly, the DNA 
sequence need not be complete; anything not explicitly 
specified in the DNA is set to default values.  When 
creatures are initialized from an un-encoded form, DNA is 
generated for them containing any values that are not equal 
to the default values. 

Creature death happens when the creature does not have 
enough of a specific energy type to support its maintenance 
costs at the end of a cycle.  Dead creatures are removed 
from the world and their location in the data structures is 
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marked as empty, meaning it can be reused by a new 
creature.  The creatures can also die by actively choosing to 
die.  There can be benefits to a species not being long lived 
such as rapid evolution.   

In the same manner reproduction happens via actions.  
The creatures actively choose to reproduce via division or 
mating.  The difference is that mating uses both mutation 
and crossover while division only uses mutation.  Crossover 
happens on two crossover points.  These crossover points 
are percentages of the total DNA segment length of the 
parent creature.  This allows for DNA segments of differing 
lengths to be crossed.  Additionally constraints are placed 
on these points to ensure that the total crossover percentage 
is within a settable range.  These percentages also round to 
the nearest segment border.  Partial segments have no 
meaning in the model so are not allowed. 

Mutation is performed for division and after crossover 
for mating.  It is performed a set number of times and has 
four types: move, copy, delete, change.  For each of these 
types a segment is randomly selected from the DNA and for 
move and copy a random location is also chosen.  For move, 
the chosen segment is moved from its current location to the 
target location selected.  Since a segment later in the DNA 
sequence is less likely to be overwritten, move has the effect 
of altering how likely the segment’s value is to be used.  
Additionally, segments that are located closer to each other 
in the DNA sequence are more likely to stay together during 
the crossover operation and vice versa.  This has the 
potential to separate desirable and undesirable segments 
more easily during the crossover operation. Copy does 
something similar but only moves a copy of the selected 
node.  This leaves the original segment where it was and 
increases the DNA’s length.  Since copy effectively moves 
the segment, it has the same effects to the creature as move 
does.  Additionally, copy increases the probability that a 
segment will be passed on in a crossover by increasing the 
number of copies of the segment present in the DNA.  
Delete simply removes the selected node, decreasing the 
DNA’s length and causing the default values to be used in 
place of the deleted segment.  Change randomly selects an 
attribute of the segments to exclusively or with a random 
value.  Exclusive or is chosen since it has a balanced truth 
table.  This means that, given random bits, it will product 
‘0’ half of the time and ‘1’ the other half. 

As a final note, this model has no explicit fitness 
function.  The likelihood of a creature’s DNA being passed 
on is directly dependent to how long they live and how 
often they breed.  Similarly, there is no concept of 
generations as the creatures choose when they want to 
breed. Lastly, mates are chosen randomly with no 
preference given to proximity.  This was done for simplicity 
sake and could be improved in future work. 

4. SIMULATION DATA 
The simulation data is largely divided into three sets of 

information, the creatures, the world and the running 
conditions.  The configurable portions of this data are 
located in an XML configuration file that is loaded by the 
application.  At the top level are the running conditions of 
the simulation.  These consist of the CUDA device to use, 
the number of cycles to run, the maximum number of cycles 
to wait between logging points and whether to write any 
new files generated with only the creature’s DNA or also in 
a verbose readable form.  The CUDA device refers to which 
GPU in the system to use if there is more than one.  Number 
of cycles is how many cycles to run in total for the 
simulation.  The max period for logging is also referred to 
as cycle batch.  The system that runs the cycles will attempt 
to run this number of cycles but will stop prematurely if an 
actionable event takes place in the simulation.  The last 
option allows a more readable form of the creatures to be 
written when requesting the simulation to write the ending 
configuration file.  Note: if both the DNA representation 
and the verbose representation of a creature are present, the 
DNA one will take precedence. 

4.1. World Data 

Through the world, the global constants of the 
simulation are setup.  For the dimensional constants, the 
world takes the number of dimensions as a parameter as 
well as the width of each dimension.  In the simulation, the 
dimensions go from zero to the given maximum and are 
represented as either a 32bit integer or a 32bit floating point 
number.  To reiterate, the coordinates of something relative 
to the spatial dimensions is its Position and is stored as a 
float, while the coordinates of something relative to the 
energy maps is its Location and is stored as an integer. 

The other major property of the simulation is energy and 
its varieties.  Energy can be defined in the world in a 
number of types of which each can exist in a number of 
frequencies.  When referring to energy with both a type and 
a frequency, it is described as an energy type-frequency as 
opposed to energy with only a type, which is an energy type.  
A reference to only energy typically refers to energy without 
a type.  Creatures store some amount of each energy type 
and consume energy each turn both through their 
maintenance costs and their actions.  The amount of 
consumed energy is without type.  The DNA of the creature 
determines what percentage of the total is paid with each 
energy type. 

The world also contains the radiant energy maps or 
simply energy maps.  These maps of energy are what the 
creatures detect when they try to sense the environment 
around them.  Creatures detect different statistics about 
specific energy type-frequencies in regions of these maps.  
The implication of this is that the creature could specialize 
its sensors to only detect specific energy types or 
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frequencies.  Creatures can also absorb these energy type-
frequencies from the world around them. 

There are actually two radiant energy maps, the main 
one containing the actual radiant energy that the creatures 
directly interact with and a secondary one to hold the 
percentage changes that need to be applied to the main map 
during the next update due to creatures absorbing energy.  
The reasoning for the second map is explained later in the 
“ApplyRegionEnergyDelta” kernel description.   

The energy maps have a different structure to their data 
then would be expected.  Fundamentally they have every 
spatial dimension in them plus a full set of energy type-
frequencies at each spatial position.  Energy frequency is the 
innermost dimension while the first spatial dimension is 
considered the outermost dimension.  Within the array 
representing the multi-dimensional structure, the innermost 
dimension would be the one that only requires an offset of 
one word to increment its index.  The outermost dimensions 
would require an offset of the product of all lower 
dimensions to increment its index.  The complication in this 
structure of data is that it is flattened for the sake of 
pitching.  In the simulation every spatial dimension but the 
lowest is folded into the upper dimensions and are 
collectively called flattened rows.  Each row consists of a 
single index of the second innermost spatial dimension plus 
all the energy type-frequencies for that row.  In other words 
each row has a width of the innermost spatial dimension’s 
width multiplied by the number of energy types and energy 
frequencies.  The structure is then pitched on these rows to 
align them to the Global memory’s specific indexes. 

There are two additional settings related to these energy 
maps and those are the ambient energy and the percent 
rollover.  The percent rollover is the amount of radiant 
energy of each energy type-frequency that is carried over 
from the previous cycle into the new cycle.  This allows for 
the changes the creatures make to the environment to have 
some lasting effect.  Ambient energy, on the other hand, is 
the amount of each energy type-frequency to add to the 
system each cycle.  It is effectively the sun shining down on 
the earth.  As long as the percent rollover is between but not 
equal to zero or one, these will eventually reach an 
equilibrium point given no creature interaction. 

The last values defined within the world are the system 
limits.  These are the maximum number of creatures, the 
maximum number of nodes per creature, the maximum 
number of regions per creature and the maximum side 
length of each region.  These are internally validated against 
the hardware to see if the simulation is runnable. 

4.2. Creature Data 

The majority of the data in the simulation deals in one 
way or another with the creatures.  Each creature has three 
base pieces of state information about it.  The first is its 
Position in the environment and intern calculated from this 
its Location in the energy maps.  The second piece of 

information is the creature’s stored energy types.  Again this 
value is used to derive other values, specifically the 
creatures mass and radius.  The last is the creature’s status.  
This is mainly used for signaling on a creature wide level 
whether the creature is dying, reproducing or uninitialized.  
With respect to uninitiated creatures, there are several 
values that mark a creature as uninitialized: a null status, a 
zero radius, having zero nodes and having zero regions.  
The last two can happen naturally but the main purpose of 
these marks is to skip work that does not need to be done.  
A creature evolving with no nodes or regions or a creature 
being uninitialized does not matter as long as it is 
recognized that there are no items to process.  The creatures 
have one additional configurable property at the creature 
level and that is the percentage of each energy type to use 
for paying the maintenance cost.  The maintenance cost is 
based on the number of nodes and links in a creature and is 
expressed in only energy without type.  These percentages 
divide up the total cost among the different types.  This 
allows the creature to potentially evolve out of the need for 
a specific energy type and actually live on even when it has 
negative of that energy type. 

Each creature has a set of interconnected nodes that form 
a recurrent neural network to control the behavior of the 
creature.  These nodes each have an action associated with 
them.  The specifics of these actions are described later in 
the “ResolveActions” kernel.  Most of the actions preform 
their task on a region of the radiant energy map who’s Id is 
included in the node definition.  The actions also have 
dimensional parameters which are typically a direction in 
which the action happens.  Note: this is only a direction and 
not a location (region) for the action to happen.  In addition, 
the action has a set of energy type-frequency parameters.  
The value these parameters encode varies from action to 
action but is always something dealing with energy. 

Each node also has a charge associated with it that is the 
sum of the incoming signals from linked nodes.  This charge 
is used with the activation function to determine if the node 
is active.  There are actually several different activation 
functions with the choice and configurations of the used 
method dependent on a pair of parameters call On Charges.  
Like with the maintenance energy at the creature level, each 
node also has a set of percentages that controls how much of 
the activation cost is paid by each energy type.  The 
activation energy cost is dependent on a fixed amount for 
the node and the number of links leaving it.  The definitions 
of the incoming links for each node consist of the node the 
link is coming from and the scale and offset to apply to the 
charge of the linked node.  This incoming scaled and offset 
node charge is added to the target nodes charge.  The nodes 
only define their incoming links and not their outgoing ones. 

The last items defined for the creature are the regions.  
Each creature can have some maximum number of regions 
defined for it that are located relative to the creature’s 
Location.  The regions are defined as a minimum and 
maximum offset in each dimension relative to the creature.  
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Since the creatures can move around, the actual location of 
these regions in the energy maps can change, allowing for 
the creature to interact with different portions of the world.  
One thing to note about regions is that they can exist outside 
of the current world and could thus be partially or 
completely invalid.  When the regions are processed, the 
portions of the regions outside of the world are ignored from 
consideration. 

5. SIMULATION IMPLEMENTATION 
The following sections will go into the details of how 

the different pieces of the program operate.  In addition, 
design considerations and reasons for specific choices will 
be mentioned for the specific pieces of code being talked 
about. 

5.1. EvoSim 

EvoSim is the externally visible layer of the simulation.  
It handles all the high level interactions with the simulation.  
Through it a simulation can be loaded, run and logged.  In 
this project the interactions with EvoSim are handled by a 
simple main function.  This function starts by instantiating 
an instance of EvoSim.  This is a parameter-less constructor 
as the configuration of the simulation is stored as XML 
data.  Loading this XML from a file is the next step of the 
simulation, followed by the validation of the loaded file.  
The creatures in the simulation can be stored in either their 
verbose form or as a DNA sequence.  When both are present 
the DNA sequence takes priority.  When validating the 
configuration, the GPU is checked for compatibility with the 
simulation and the configuration parameters are checked to 
validate that they will not overrun the limitation of the 
Shared memory.  EvoSim’s Malloc is called next but it will 
require a successful validation before running without 
returning an error.  The last step to setup the simulation is to 
call MemcpyHostToDeviceAll to copy all the data about the 
simulation to the GPU. 

Running the simulation is simply a matter of setting the 
values you would like to be logged and calling RunCycles.  
The entire configuration about the simulation is in the XML 
configuration file.  The last function of note is SaveConfig 
that allows you to save the current configuration of the 
simulation at any point.  This is mainly to allow you to 
analyze the living creatures at the end of the simulation or 
start a new simulation from the same point.  The remainder 
of the main function is just cleanup operations. 

There are a few more functions in EvoSim that warrant 
some additional explanation.  The first are LoadTest and 
RunDebug.  This pair of debugging functions were used 
before the XML loading was implemented.  LoadTest loads 
a default configuration of the simulation and RunDebug 
runs the simulation with some extra print statements.  
RunDebug does not support logging of the simulation 
results.   

Loading of the XML configuration files starts with 
LoadConfigFile.  This function handles the general data not 
about the world or the creatures.  The world and creature 
tags are handed off to their respective classes to be decoded 
directly into their respective member variables. 

The job of RunCycles is three fold.  The first purpose is, 
of course, to run the cycles of the simulation and the second 
to log the data that has been requested to be logged when 
SimCore returns from a cycle batch.  The maximum size of 
a cycle batch can be specified in the XML and is the 
maximum number of cycles SimCore will run before 
stopping for logging.  SimCore will stop prematurely if an 
actionable event happens before all cycles are run.  The 
third purpose, happening in the last step, is to handle the 
actionable events. 

Actionable events are reproduction and death.  These are 
handled at this level due to their sequential and highly 
complex nature.  Another problem is that the handling of 
these events can cause memory allocation and deallocation.  
The last issue is that the reproduction algorithm needs 
access to the DNA representation of the creature which only 
exists in the high level representation of the simulation.  The 
first step of handling the actionable events is to update the 
variables in the high level representation from the low level 
representation.  When this is done, creatures are checked for 
a status of death and deallocated if need be.  The 
deallocation code handles marking the creatures and their 
regions and nodes as deallocated so that the kernels can skip 
them. 

If the reproduction flag was set or this method was 
called due to a full batch of cycles being run, the 
reproduction code is processed.  One of the problems 
encountered when actually running the simulation was 
sterility.  Since the creatures can choose to reproduce they 
are able to evolve to a point of being serial.  To counter this, 
forced reproduction is done with the original fertile creature 
to keep the population from going sterile.  Following this is 
a pair of loops to check every node of every creature that 
has a status of reproduce. 

There are two reproduction events, Divide and Mate.  
The difference is that Divide only mutates the original 
creature while Mate preforms a DNA crossover with a 
randomly selected creature or the base creature in the case 
of sterility.  The properties of the actions that generated the 
event actually control some aspects of the reproduction.  
Firstly, the dimensional parameters of the node designate 
the relative position where the new creature should be 
placed.  The energy parameters of the node designate the 
percentage of energy that should be given to the child.  
Some percentage of this transferred energy is also lost as a 
cost of reproduction.  After this, the original creature is no 
longer needed so its updated energy can be written back to 
the low level representation of the simulation. 

Evolution is handled two ways, mutation and crossover.  
Both Mate and Divide have mutation but only Mate does 
any crossover of DNA between creatures.  Crossover is 
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handled first so that both methods can use the same 
mutation code.  For any creature that mating applies to, 
crossover starts by randomly selecting a second parent from 
the other creatures.  The crossover is handled by a pair of 
percentages.  Two different random numbers are chosen 
between zero and one (inequality is enforced).  These values 
are used to split the DNA of the two creatures at percentages 
of their lengths.  This was done to remedy the problem of 
varying length DNA.  Before splitting, these values are 
checked to make sure the amount of DNA crossover 
between the two creatures is within a set window, 0.25 to 
0.75 for this project.   

The DNA is represented as a linked list of segments.  
Each segment contains 4 values which are used to varying 
degrees.  Parameter type is the first and is an enumeration of 
all the different configurable creature parameters.  Next is 
the segment info which is used as an index or ID of the 
element within the creature, (node, region, etc.).  Sub 
segment info is any further categorization of the parameter, 
for instance dimension, energy type, etc.  The last is the 
actual value which can be read as an unsigned long, long or 
float.  When reading DNA values, a modulus is preformed 
against the limits of that parameter to put it into a 
meaningful range. 

The crossover of the DNA sequence is handled by three 
iterator loops.  The first copies the first creature’s DNA 
from the zeroth segment to the one designated by the lower 
of the two percentages.  The next loop copies the segments 
from the second creature from the lower percentage to the 
higher percentage.  The last loop finishes off by copying 
again from the first creature at the high percentage till the 
end.  In addition, if the lower and upper percentages have 
been reversed, the creatures are also reversed when the 
percentages are swapped back into order.  This algorithm 
allows for a wide variety of different crossovers to happen. 

The second method of evolution is mutation.  The 
number of mutations to perform is designated by a constant.  
For each mutation, a random node is selected and one of 
four mutations is performed on that node.  The first is 
simply to randomly move the node elsewhere in the list.  
This does not change the node in any way and merely 
changes where it is located in the DNA.  The next method is 
to copy the current node to some other location in the code.  
The next and simplest mutation is to just delete the node.  
The final mutation is to randomly choose one of the values 
in the segment to randomly change.  This modification is 
done by performing an exclusive or on the value chosen 
with a random value.  The exclusive or was chosen because 
it does not favor 0 or 1.  Three out of four of these 
operations require randomly changing the positioning of 
segments in the DNA.  A linked list was chosen to represent 
the DNA specifically because of these mutation operations.  
The penalty is that the individual segments must be indexed 
too.  A utility function was created for this purpose and 
simply returns the iterator into a linked list some number of 
steps in. 

With this, the DNA for the new creature has been 
created and can be decoded by the new creature.  This 
handles fixing critical problems in the creature due to any 
problems in the DNA.  Specifically, it keeps track of 
hanging links and region references.  When it finds a 
hanging link it creates an object to hold the other end of the 
link even if the link is the only non-default piece of 
information about the object.  It also handles the scaling of 
values read from the DNA into the proper ranges.  After all 
creatures have been checked for reproduction, the data about 
the creatures is updated in the lower level code and control 
transfers back to the GPU. 

5.2. SimCore 

The purpose of SimCore is ultimately to handle all 
interaction with the GPU.  Its first responsibility is that of a 
memory manager.    The high level representation of the 
simulation contained within EvoSim would be very 
inefficient if used in the GPU.  To improve the performance 
of the kernels, the data must be structured into such a way 
that it makes it more efficient to transfer between the 
different sections of memory in the GPU.  When using 
Object Oriented methods, the data is structured into an 
Array of Structures form [10].  Structures in this phrase are 
meant in the general sense and not in the literal sense.  What 
this means is that data is arranged into an array where each 
index of the array has many values.  While this data 
structure is acceptable in a sequential system, it makes 
Memory Coalescence impossible.  Only data that is stored 
sequentially can be coalesced for transfer.  Also, each kernel 
will only need a subset of the data.  This leaves one of two 
choices.  Either transfer unneeded data or jump around in 
memory only taking the pieces of each structure that are 
needed.   

The alternative method is Structure of Arrays.  Again, 
structure is not meant in the literal sense.  With this strategy, 
each creature represents an index or a set of indexes in an 
array.  These individual arrays only contain data about one 
of the properties.  Some other structure, SimCore in this 
case, contains these arrays.  The benefit is that now the data 
for each parameter is continuous and can be coalesced for 
transfer within the GPU.  Thus SimCore needs to contain a 
low level, Structure of Arrays, representation of the 
Simulation data to be transferred to the GPU.   

Several utility classes have been created to handle 
allocation and deallocation of memory for both the GPU and 
CPU simultaneously.  The simplest is DeviceArray, which 
is just a single array of some type.  The class defines several 
Malloc choices.  There are really two choices to make with 
respect to which Malloc function to use: first, does the array 
need to be pitched and second, does an initial value need to 
be set.  Pitching an array is when the rows of a two 
dimension matrix are offset to correspond to the Global 
Memory indexes, typicality by 512 bytes.  The advantage is 
improved transfer times of individual rows at the cost of 
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wasted memory.  The class also defines a free method that 
will clean up the memory on both the CPU and GPU.  
Lastly, this class exposes methods to copy data between the 
GPU and CPU arrays.  

The next class is DeviceJaggedArray that is simply an 
array of arrays.  More specifically, it is an array of 
DeviceArrays.  It defines all the same functions as 
DeviceArray with the addition of per item versions of each 
behavior.  The last class is the DeviceMultiArray which is 
only really used for the radiant energy maps.  What is 
special about it is that it allows for a multidimensional array 
to be defined and then pitched on any of its dimensions.  
Other than that, DeviceMultiArray defines much of the 
same functionality as the other two classes. 

These three classes are used by SimCore to define all 
arrays of data contained within the GPU.  The allocation and 
initialization of these arrays are handled by SimCore’s 
Malloc and MallocCreature functions.  Malloc handles the 
allocation and initialization of all non-creature specific 
arrays.  This includes the arrays about the environment, the 
top level of the jagged arrays and the non-jagged creature 
arrays.  The non-jagged creature arrays are of fixed size 
based on the values given to the simulation at construction 
so can be allocation without any relation to the individual 
creatures.  The top levels of the jagged arrays are the same 
way, only depending on the maximum number of creatures. 

MallocCreature handles the allocation and initialization 
of the individual creatures but also has to deal with some 
conversion of data during the initialization.  The special 
cases in this method are the creature’s nodes and regions.  In 
the case of the nodes, each node must be allocated and 
initialized individually.  While doing this, the maximum 
number of input links must also be found.  This max links 
per node value is used as the height of the pitched links 
matrix.  With the array allocated, an internal function is 
called to convert the given linked list form of the linked 
nodes into a compressed form.  The specifics of this 
compressed form are described later.   

The regions must also be converted to the lower level 
representations.  The high level representation of the regions 
is a list of the left and right offsets relative to the owning 
creature, which defines the boundaries of the region in each 
dimension.  Regions within the GPU only really deal with 
Location as opposed to Position.  To more easily process a 
region in the GPU, the boundaries are converted into a list 
of relative offsets to rows that need to be checked in the 
radiant energy map.  The first step is to find out how many 
rows are needed total so that the memory can be allocated.  
The second step is to loop through the dimensions, 
recording every relative offset row needed.  The innermost 
dimensions range is stored separately since it is the same for 
all rows in a given region. 

The last method of note in SimCore is RunCycles, which 
as the name implies, runs cycles of the simulation.  
Specifically it will attempt to run the number of cycles it is 
told to.  The method will also terminate prematurely if an 

actionable event, (reproduction and death), happens before 
the total number of cycles is run.  The method has three by-
reference parameters to return the actual number of cycles 
run and which event was found.  The kernels run in the 
following order: CalcRadiantEnergy, CalcRegionValue, 
CalcNodeCharge, CalcNodeActive, ResolveActions, 
ApplyRegionEnergyDelta, ResolveCollision, 
ResolveMovement and CheckReproductionAndDeath.  
CalcRadiantEnergy needs to be first so that the radiant 
energy map can be initialized before it is used in the first 
cycle of a simulation. CalcRegionValue follows this to 
calculate the new region values from the updated radiant 
energy. CalcNodeCharge and CalcNodeActive handle the 
processing of the creature’s neural network.  The task of 
calculating the node charge and checking for activation was 
divided to reduce shared memory usage.  ResolveActions 
handles the processing of all the actions caused by activated 
nodes.  ApplyRegionEnergyDelta’s job is to apply the 
energy deltas from each region to the secondary radiant 
energy map of percentage changes.  These changes in 
energy are due to the actions in the previous kernel.  
ResolveCollision handles the detection and resultant 
impulses of all collisions between creatures but does not 
actually apply them.  ResolveMovement collects the 
impulses from collisions and actions and does the physics 
computations to resolve the creatures’ new positions and 
momentums.  In the end CheckReproductionAndDeath 
handles the deduction of the node and link maintenance 
energy from the creatures and the detection of reproduction 
and death events.  

5.3. Kernels 

In CUDA, a kernel is a function that is run by the blocks 
within the GPU.  Fundamentally, a kernel is the “Single 
Instruction” in SIMD that the GPU runs in parallel.  It is 
defined similarly to any function with parameters but no 
return value.  These parameters are either values or pointers 
to locations in the GPU’s memory.  By design, nearly all of 
the actual calculations for the simulation happen in the 
kernels.  This was done to maximize the opportunities for 
parallelization of work and minimize the overhead 
associated with moving data between the CPU and GPU.  
The only task that was deemed impractical to implement in 
the GPU was the handling of reproduction and death.  The 
two main reasons were that reproduction required the high 
level representation of the creature and both reproduction 
and death caused memory allocation and deallocation. 

5.3.1. General form of the kernel 

With the more recent versions of CUDA, the support for 
kernel linking was added.  This functionality adds “.cuh” 
header files in addition to the “.cu” source code files.  This 
functionality allows for kernels to be divided up into smaller 
files as opposed to existing monolithically in the same file 
as would have to be done previously.  The down side of this 
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is related to calling the kernels and the constant memory 
variables.  A method was not found to directly call the 
kernels from outside of the CUDA files they are defined in.  
The solution was to simply add a C++ function in the same 
file to call the kernel.  With respect to the constant memory 
variables, the CUDA documentation [11] defines that the 
scope for the “__constant__” tag used to define the constant 
memory variables, to be only the file in which the variable 
is defined.  This unfortunately necessitated the redundant 
declaration of needed constant memory variables in every 
kernel “.cu” file that needed it. 

Each kernel has six functions defined for it based of the 
root of the kernel name.  The kernels use the root name with 
“Kernel” post fixed.  The C++ wrapper uses this root name 
directly and has an additional three parameters beyond what 
the kernel requires.  These parameters are the Grid size, 
Block size and size of the dynamic Shared memory Block 
needed by the kernel.  The last three functions are all post 
fixed with “SharedMemoryNeeded” and prefixed with 
either “Calculate”, “Constant”, of “Total”.  “Calculate” 
returns the variable byte size of shared memory needed 
based on given parameters.  “Constant” returns the non-
variable component of the shared memory needed and 
“Total” simply returns the total of the two.   The shared 
memory size passed into the wrapper function is actually 
only the variable component of shared memory as the kernel 
defines its own constant shared memory. 

The kernel naming conventions follow a common 
pattern.  They start with the declarations of all needed 
variables.  The variables in a kernel have one of 3 prefixes 
or no prefix and use camel case.  The parameters passed into 
the kernel have no prefix and are either pointers to Global 
memory or values.  The other 3 prefixes are used to 
designate where the variable exists in GPU memory.  They 
are ‘g’ for Global, ‘s’ for shared and ‘l’ for local.  The prefix 
consists of one of these letters followed by an underscore.  
The Global variables are pointers into Global memory.  
They are used to sub index the Global memory pointers that 
are passed in as parameters.  The Shared variables are either 
pointers into the dynamic Shared memory Block or non-
dynamic Shared values defined within the kernel itself.  The 
Local variables represent the registers and the backup Local 
memory for when there are too many registers.  They are 
used as inter-kernel processing variables.  Following are 
examples of this naming convention for a parameter, global 
pointer, shared pointer and local variable in that order: 
nodeCharge, g_nodeCharge, s_nodeCharge, l_nodeCharge. 

The reset of the kernel can be dived into to three broad 
categories: setup, processing and update.  The main purpose 
of the setup sections is to initialize the Shared memory.  
This can mean both coping data from Global and setting 
default values.  Values copied from Global to Shared are 
typical done via a multi-Threaded loop.  Simply put, the 
sequential Threads each copy one value in order before 
wrapping around to copy more if need be.  This improves 
memory transfer coalescence.  Typically, local values are 

also initialized in this section but need not be.  The reason 
for this is that Shared memory usually contains arrays of 
data while Local memory usually contains single values.  A 
setup section frequently ends with a sync to make sure all 
the data has been transferred before continuing.  A kernel 
can have several setup sections for each division layer of the 
work.  The most common places are directly preceding the 
Block and Thread loops. 

The processing sections vary a lot by the different tasks 
they perform but contain some common elements.  
Frequently a loop starts with a conditional check to see if 
the current item should be skipped.  There are many cases 
where an item is invalid and should not be processed.  Each 
kernel typically has several nested processing loops.  These 
are typically based on the Blocks and Threads but can also 
divide the problem by Warps for some of the more complex 
item structures.  Further description of each kernel can be 
found later in this report. 

The last section is the update section. The purpose of the 
update sections if to write values back to Global.  
Frequently, Shared memory is used by the processing loops 
to store the results locally so that they could be copied back 
to Global in an efficient manner.  This efficient manner is 
again a small Thread loop that assigns subsets of the values 
to each Thread.  Just like the setup section, there can be 
several update sections.  The update sections typically 
mirror the setup sections and appear directly after a 
processing loop.  Frequently an update section begins with a 
sync to make sure all data is ready to be transferred. 

5.3.2. CalcRadiantEnergy  

As was stated, the environment the creatures live in is 
represented as a multidimensional energy map.  The purpose 
for the CalcRadiantEnergy kernel is to update the values for 
the radiant energy map.  In the current implementation there 
are three contributions to radiant energy.  The first is a 
settable value of how much energy should roll over from 
cycle to cycle.  The next is how much additional/ambient 
energy is being added to the system each cycle.  The last is 
how much energy the creatures absorbed from the radiant 
energy. 

Since this kernel deals with the radiant energy map, the 
work load for the Blocks is divided by the flattened rows of 
the energy map.  Once again flattened rows are all 
dimensions above the first reduced to one very big 
dimension.  The first thing done is to copy the ambient 
energy being added to the system from Global to Shared.  
From here the kernel splits into two cases.  The difference is 
whether there is a percent rollover of radiant energy in the 
simulation.  If there is not then several steps can be skipped.  
In this initial implementation only the case including 
percent rollover is used.  The original idea was to have land 
in the simulation.  Pieces of land would consume spaces and 
also store and release energy.  Percent rollover was a 
simpler way to get the radiant energy persistence that land 
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would have given.  This is important because it allows 
creatures to have a lasting effect on the environment.  The 
other source is the energy the creatures have absorbed.  An 
idea for future work is to have the creatures emit energy 
based on their current energy levels.  The idea was they 
would have some control over the frequencies of energy but 
not over the quantity.  Thus, a whole stealth aspect could be 
born from the combination of sensors and creature 
emissions in different frequencies. 

For the percent rollover case, the first thing done is to 
copy the old radiant energy and the percent rollover values 
from Global to Shared.  In the main Thread loop each 
Thread handles a subset of the total energy types and 
frequencies per row.  In other words, the rows in the energy 
map have the number of energy types multiplied by the 
number of energy frequencies multiplied by the number of 
columns of floats in them.  In this calculation the energy 
absorbed by the creatures is removed before the percent 
rollover is applied.  Next, the incident ambient energy is 
added.  This new value is then written to Shared.  In the 
non-percent rollover case, the new radiant energy is directly 
equal to the incident ambient energy.  Lastly, the new 
radiant energies are copied back to Global in Thread batch 
fashion. 

5.3.3. CalcRegionValue  

Regions in the simulation are bounded spaces in the 
radiant energy map relative to the owning creature.  As the 
creature moves, the region moves with it.  This also means 
that a region can be partially or completely outside of 
known space.  The CalcRegionValue kernel handles the 
calculation of four statistics about each energy type-
frequency in each region.  These four values are minimum, 
maximum, total and count.  Total is the summation of all 
values of a specific energy type-frequency in the region 
while count is simply a tally of how many valid spaces were 
used in the calculations. 

Seeing as this kernel calculates statistics about regions, it 
makes sense that it divides the total number of regions to 
process among the different Blocks.  As a result of the 
genetic evolution of the creatures, a region may be defined 
but ultimately be empty.  The first step in the Block loop is 
to verify that the region being considered has any rows to 
check at all.  The Block loop continues from here like most 
kernels with the coping of data from Global.  Specifically, 
the list of relative offsets into the flattened radiant energy 
matrix is read for this region.  The last step before starting 
the calculation is to initialize the local variables for the 
calculated values and initialize shared memory.  Total and 
count are set to zero while minimum and maximum are set 
to the positive and negative of the maximum float value 
respectively. The last step of the setup is to have Warp zero 
initialize the shared memory with the default values.   

Unlike most kernels, this kernel actually has an 
additional layer of division of work.  Normally the work is 

divided by Blocks and then by Threads.  In this kernel the 
work is divided by Blocks then by Warps and finally by 
Threads.  The nature of the problem is what drives this.  At 
the top level the regions are divided among the Blocks.  
Below that the flattened rows are divided among the Warps, 
each Warp handling a row at a time.  Lastly, the Threads in 
the Warps handle one energy type-frequencies each.  The 
difficulty with this method is the variable nature of the 
energy type-frequencies.   

Since the number of energy type-frequencies is variable, 
simple methods would not work well.  To explain, for every 
column space in a row there exists a full set of energy type-
frequencies.  The ideal case is when the number of energy 
type-frequencies just so happens to be the Warp width, 32.  
In this case each Thread handles an index in each row and 
nothing special has to be done.  Obviously this is very 
unlikely to happen.  There are two non-ideal cases, to small 
and too large.  In the too small case the number of energy 
type-frequencies is less than the Warp width.  A way to fix 
this is to just have each Warp process multiple columns at a 
time.  Again this is unlikely to perfectly fill the Warp. The 
way around this is to just round down, meaning only put as 
many columns in the Warp as will completely fit.  This may 
leave some wasted processing but it prevents Warp 
Divergence. In the kernel, the constant 
“WidthOfEnergySetsPerWarp” contains the width of the 
energy type-frequencies sets that can completely fit in the 
Warp.   

The other issue is when the number of energy type-
frequencies is greater than the Warp width.  This basically 
means that each Warp cannot fully process a single column 
in a flatten row.  The method used to resolve this was to 
create a virtual Warp width. The idea is to use as many 
Warps as is needed to fully process a column, meaning just 
multiply the Warp width by some positive nonzero integer 
to get a virtual Warp width that is sufficient.  
“WarpSizeNeededPerEnergySet” is the resulting virtual 
Warp width.  This method is typically used in conjunction 
with the “too small” case given previously as doubling the 
Warp width will likely be more than is needed.   

This kernel intern has several extra pieces of information 
related to the division by Warps and Energy type-
frequencies.  Warp width is the total number of virtual 
Warps in the kernel and Warp index is the index of each 
Thread relative to the start of their Warp.  The last special 
value is energy index.  This is the energy type-frequency 
that each Thread will consider.  Each Thread can only 
handle one energy type-frequencies at a time but each 
energy type-frequency is likely handled by multiple 
Threads.  Only handling one at a time is to keep the 
different energy type-frequencies separate. 

The virtual Warp width also affects the information 
about the Warp.  Warp ID is the ID of the Warp to which 
the Thread belongs.  When using the virtual Warps, all 
Warps in the same virtual Warp share the same Warp ID.   
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The first step after the post initialization sync is to 
calculate the first and last valid column in this region. This 
value is relative to the creature’s location and is bounded by 
the limits of the radiant energy map.  Following this is two 
checks merged into one.  This first is to check that the min 
is less than the max.  If this is not true it means that there are 
no valid columns and the entire region can be skipped.  The 
next check is if the current Thread has a valid Warp index.  
Since it is unlikely the virtual Warp will be completely 
filled, there will be Threads at the end that sit idle.  
Following this check is the Warp loop that assigns a subset 
of the flattened rows to each Warp.  Now the row index can 
be retrieved and validated.  Again, since the creature can 
move, there can be relative rows that are outside the bounds 
of the radiant energy map.  These rows are just skipped and 
processing continues with the next row.   

The innermost loop is what appears to be a Thread loop 
but is not a typical Thread loop.  The difference is that this 
loop increments by the width of the energy type-frequencies 
processed by each virtual Warp, as opposed to the Thread 
width.  The implication of this is that the inactive Threads 
would have actually been pointing to the data of the next 
cycle of the loop.  As the Warps finished with their allotted 
set of rows, they atomically set their values into shared.  
Doing this required the creation of two additional methods 
based of the standard atomic operations [11].  Atomic Add 
was already available from CUDA, but using the template 
on their site, an additional two methods were created to do 
an Atomic minimum and maximum.  Finally at the end, the 
values are copied back to Global before the next region is 
processed. 

5.3.4. CalcNodeCharge  

The processing of the Neural Networks for each creature 
was divided into two kernels for the sake of Shared memory 
capacity.  The first is the CalcNodeCharge kernel that 
calculates the new node charge for each node relative to the 
incoming links to it.  Being about the creatures, this kernel 
again divides the creatures among the different Blocks to be 
processed.  Before any calculations are done in this kernel, 
each Block first checks that the creature it is processing has 
any nodes.  A node-less creature can come from evolution 
but is also one of the marks of an uninitialized creature.  In 
the initialization step, the old node charges and activations 
for the creature are copied from Global to Shared.  Like 
with other kernels that process nodes, each Thread handles a 
subset of the creature’s nodes. 

For each node, the first step is to verify that the node 
even has links.  Each creature has an array of structures 
containing the information about the links for each node.  
The structure of this list has been designed to improve 
performance but in turn is slightly complicated.  The list 
starts with a single entry for every node even if the node has 
no incoming links.  Additional links after the first are stored 
in a packed collated form after the set of first links.  This 
means that all the second links for nodes that have second 
links appear in order and without gaps after the list of first 
links and before any third links.  The third links follow and 
the pattern repeats until all links have been encoded.  This 
structure was chosen to improve memory coalescence when 
retrieving the data from Global.  Several tests were done 
with variations of different storage patterns.  Each set of 
links being in order, sequential and pitched yielded the best 
performance.  In this arrangement missing links are skipped 
and the next appropriate link on that level is instead written 
to that location.  The pitching means that each level of links 
starts on a Global memory index.  This intern means that 
there is wasted Global memory in this structure.  This was 
deemed acceptable for the performance increase. 

Starting with the first link nodes, the kernel checks that 
the linked node ID is less than the total number of nodes in 
the creature.  This check might appear to be a simple 
safeguard but actually serves an important purpose.  
Because of the encoding structure every nodes must have a 
first link even if it has no links.  This fake first link is 
marked as invalid by setting its linked node to hex 
0xFFFFFFFF.  Assuming the first link is valid; the 
associated node is next checked for activation.  If active, its 
scaled and offset charge is added to the local tally of the 
node charge.   

The information about the links consists of four pieces 
of information.  The first three, (linked node, scale offset), 
were just used.  The last is the byte offset to the next node 
within the link information array.  Byte offset must be 
stored because the array is pitched at the beginning of each 
link level.  This means that the number of bytes to the next 
location might not be a multiple of the structure size.  In the 
kernel, the pointer into this structure is also kept as a byte 
pointer and cast to the link information structure for this 
reason.  Each thread will loop over this array, offsetting its 
pointer by the stored byte offset, until if finds a zero byte 
offset.  This zero byte offset is used to mark a link as the last 
link.  Each linked node found this way is checked for 
activation and added to the node charge tally if active.  The 
last task for the Thread is to write the updated node charges 
back to Global.  
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5.3.5. CalcNodeActive  

The second step in processing the neural network is to 
take the calculated charges and determine if the nodes are 
active.  This is handled by the CalcNodeActive kernel.  This 
kernel does not have any initialization before the Block 
Thread which like in the first step, assigns a subset of the 
creatures to each Block.  Again, a check is made to make 
sure the creature has any nodes to process before 
continuing.  The values copied from Global are the energy 
levels of each node for the current creature and the energy 
cost of each node to activate. 

After a sync, the Thread loop assigns a subset of the 
nodes to each Thread in a similar manner to the first step.  
For each node individually, the activation costs are checked 
to make sure the node is even able to activate.  This check is 
actually not completely accurate.  Later in the kernel the 
activation cost of the activated nodes will be deducted.  The 
deduction itself is atomic but is not synchronized with this 
early check.  The consequence is that some nodes might 
activate that should not be able to activate.  This was 
deemed an acceptable consequence since the cost to activate 
will still be subtracted.  The only possible consequence is 
that a creature kills itself activating a node it should not be 
able to.  This death is not a problem in the broader view of 
the simulation. 

The main reason to pre-check for the nodes’ ability to 
activate is to be able to skip the activation functions for any 
nodes that do not need them processed.  The reason this is 
such a concern is due to the activation functions.  Each node 
has two On Charges defined for it.  Based on the values and 
relative values of these two On Charges, different activation 
functions are used.  This leads to a lot of unavoidable 
Thread divergence.  Luckily, the divergence is limited to 
only a short section and only has six distinct paths.  So 
assuming the node can activate, what follows is a set of six 
if-else statements that choose the different activation 
functions.  These different cases are listed in Table 1.  

These six activation functions allow for a variety of 
behavior and even include band filters.  The next step is to 
check if the node is active and subtract the activation cost if 
it is.  Lastly, regardless of whether the node could activate 
or not, the new activation state is written back to Global 
before going on to the next node.  The last step before 
moving on to the next creature is to write the new creature 

energy back to Global with the node activation costs 
subtracted from it. 

5.3.6. ResolveActions 

The ResolveActions kernel is the most varied and 
branching of the kernels.  This is because this kernel handles 
the processing of all the actions.  The concern with this 
kernel is Warp divergence due to multiple nodes being 
active.  The counter to this is the assumption that for a 
Warp, the number of active nodes will be minimal so the 
Warp divergence of the kernel will be minimal.  Ultimately, 
Warp divergence for this kernel is considered an 
unavoidable consequence of having multiple different 
actions. 

Like other kernels dealing with node processing, this 
kernel assigns a subset of the creatures to each Block and a 
subset of that creature’s nodes to each Thread.  Again, the 
Block loop starts with checking if the creature has any 
nodes to process in the first place.  Following this is the 
initialization step for that creature.  Since this kernel deals 
with all actions, it has to copy a lot of different data from 
Global.  Specifically it needs: creature energy, region 
values, action energy scale and action magnitude vector.  
Action energy scale is the energy type-frequency parameters 
of an action while action magnitude vector are the 
dimensional parameters of the action.  The actual meaning 
of the parameters varies for each action.  The last step of 
initialization is to zero out the shared memory holding the 
energy delta percentage per region and the kinetic energy 
impulse being applied to the creature. 

The Thread loop comes next after the post initialization 
sync.  Again each Thread in the Thread loop handles a 
subset of the nodes.  After checking if the node is active, the 
flow of the kernel is split by a switch statement on the 
action type.  This is the point of Warp divergence.  
Unfortunately, any active nodes within the same Warp are 
very likely to traverse this region of the code in a sequential 
manner.   

The first set of actions are the sensing actions and they 
all behave in a very similar manner.  For each energy type-
frequency they add a scaled value to the node charge.  What 
this value is depends on the action type.  The scale used is 
the value stored in the action’s energy parameters.  The 
values comes from either the creature’s own energy in the 
case of “SenseSelf” or a region for all the other cases.  For 

Table 1: Activation Functions 
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“SenseSelf” specifically, only energy type and not energy 
frequency is considered as the creatures only store 
frequency-less energy types.  The other six sensing actions 
calculate the value they need from the region values: 
minimum, maximum, total, count.  As a reminder, total is 
the sum of all spaces in the region of a specific type-
frequency and count is the number of locations in the 
region.  The six actions calculate their value to be used in 
the following ways: “SenseAverage” total / count, 
“SenseAbsoluteMax” maximum, “SenseAbsoluteMin” 
minimum, “SenseRelativeMax” maximum - total / count, 
“SenseRelativeMin” minimum - total / count, 
“SenseMaxMinDelta” maximum - minimum. 

The final two actions are Absorb and Move.  Absorb is 
used to absorb energy from the radiant energy map within 
the specified region.  Within this action each Thread has to 
handle the processing of each energy type-frequency by 
itself.  In this action the energy parameters are the 
percentage of energy to try to absorb for a particular energy 
type-frequency.  Only the energy type-frequencies with 
significant absorption amounts are considered by this action.  
Specifically, this means greater than some set float value 
epsilon.  Two things must be done for each of these energy 
type-frequencies.  First, the percentage absorbed from the 
region must be atomically added to the total percentage 
absorb for that region.  This is done locally in shared to 
minimize the cost of the atomic operation.   

The second step is to add the absorbed energy to the 
creature.  Since Absorb is region based, the “total” region 
value can be used to calculate the amount absorbed.  A 
potential conflict with this method is that two creatures 
could be trying to absorb energy from two overlapping 
regions.  This is why the percentage is stored for updating 
the radiant energy map.  This percentage has the potential of 
getting to over 100% and driving the radiant energy 
negative.  This is actually not a bad thing and will just be 
reflected in the region values for any effected region in the 
next cycle.   

The last thing to consider with absorption is that it is not 
100% efficient.  In this simulation, the slower you absorb 
energy the more efficiently you can absorb it.  The idea is 
that a creature can try and absorb 100% of the energy but 
will only get 50% of the energy.  The remaining 50% is lost.  
The consequence is now they have completely depleted the 
storage of energy in that region.  The efficiency was based 
on the idea that you have diminishing returns the more 
energy you try to absorb.  The equation for the amount of 
energy absorbed is total * scale * (100% - (0.5 * scale)).  
This equation behaves in a way where the percentage of 
energy you lose is half the percentage you gathered.  This 
loss percentage is applied to the energy absorbed and not the 
total energy.  For instance if you were trying to gather 100% 
you would loss 50% of the 100% you gather.  A better 
example would be trying to gather 50%.  In this case you 
lose 25% of the 50% you gathered or 12.5% of the total 
energy.  This also has the implication that if you try and 

gather 200% you will lose all the energy you gathered while 
setting a very negative value in the radiant energy map.  
Even further past 200% and you are actually losing energy 
when you try to absorb.  The last step of this action is to 
atomically add the absorbed energy to the creature energy 
stored in Shared. 

The last action is Move.  What Move does is transfer 
creature energy into kinetic energy.  For this action the 
energy parameters contain the quantity of energy of each 
type to transfer and the dimensional parameters contain the 
unit vector of which direction to move.  The first step is to 
remove the energy to be transferred from the creature.  This 
action must be done atomically and only if there is sufficient 
energy.  Because of this, a specialized version of the atomic 
operations was done in place.  It was not made into a 
function since it is not used anywhere else and has very 
special behavior.  The main difference between this atomic 
subtraction and others is that the Thread will skip the 
operation if the creature has insufficient energy.  The last 
step is to apply the total transferred energy to the individual 
dimensions based on the given unit vector in the actions 
dimensional parameters.  This step is skipped for trivial 
amounts of transferred energy. 

After the action for the node has been processed, the 
only cleanup work is copying the new node charge back to 
Global.  The sense actions add their sensed values to the 
already activated node.  While this does not affect the 
activation of the node in this cycle, it will affect the strength 
of the signal to linked nodes in the next cycle.  The 
processing of the creature as a whole finishes by updating 
the creature energy, the region energy delta percentages and 
the creature kinetic energy.  The last step is to calculate the 
creature’s radius and mass.  These values are used by 
several kernels later in the cycle but are calculated here.  
Stored energy it used to calculate both the mass and radius 
of the creature.  Additionally, the number of dimensions 
effects how the radius is calculated as it is based on the 
spheroid volume needed to contain the creature’s energy at 
some set density. 

5.3.7. ApplyRegionEnergyDelta  

Updating the radiant energy map after energy has been 
absorbed by a creature is actually a very difficult task to do 
in parallel.  The problem is this task requires different types 
of work divisions at different steps.  Specifically, it requires 
a division by creature and node to determine what 
percentage is being absorbed per region.  This absorption 
rate per region then needs to be applied to the radiant energy 
map, which requires a division by region.  The problem with 
this is that the change in energy is represented as a 
percentage of the initial value.  If the changes were applied 
sequentially and two regions overlapped, then the absorbed 
energy from the radiant energy map would be less as one of 
the two would see a lower initial value.  The solution that 
was chosen after much consideration was to create a copy of 
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the radiant energy map that holds the total percentage 
change to be applied to each region.  This percentage 
change is the same value that was used in the 
CalcRadiantEnergy kernel. 

For this problem the ResolveActions kernel handles the 
generation of the absorption percentage region and the 
CalcRadiantEnergy kernel will handle applying the 
percentage changes to the radiant energy map.  This kernel 
handles the conventions of the region percentage energy 
change to the percentage energy changed map.  Like 
CalcRegionValue this is a kernel that processes regions.  
Again it starts by assigning a subset of the regions to each 
Block.  If the region has any rows to consider, it then 
proceeds to copy the region energy delta percentages from 
Global to Shared.  To save some work, the read values are 
pre-checked for non-zero values.  If all the percentage 
change values are zero then there is nothing that needs to be 
done for this region and it can be skipped. 

Assuming that there are percentage energy deltas to 
process, the kernel starts the region handling in a similar 
manner to CalcRegionValue.  Again, the first step is to copy 
the relative offsets to the needed rows for the region from 
Global.  Next, check if the current Thread’s energy type-
frequency has a delta energy percentage associated with it.  
Just like the region case, skip any energy type-frequencies 
that do not need to be processed.  Following this is again the 
calculation of the minimum and maximum value columns 
and the check to see if there are any valid columns to 
consider.  The unneeded Threads are again skipping like 
before.  Next, check if the row is valid and if it is, then 
atomically add the percentage energy delta to the Global 
energy map for radiant energy delta percentage.  This action 
is again a necessary inefficiency.  Atomic operations with 
Shared are costly to begin with.  When they are made with 
Global they become something to be avoided.  
Unfortunately, a better method of dealing with overlapping 
region updates was not able to be found so the added cost 
was just taken as unavoidable.  Since the new values are 
written as part of the inner loop, this kernel has no final 
update section. 

5.3.8. ResolveCollision  

The ResolveCollision kernel deals with the detection and 
physics of collisions between creatures.  Ultimately its only 
purpose is to calculate the total change in momentum due to 
collisions to be later used by the ResolveMovement kernel.  
Before even defining any of the variables, a check needs to 
be made that there are more than one creature.  A creature 
cannot collide with itself so any work in this kernel when 
there are less than two creatures is pointless.  Before the 
Block loop, creature positions and radii are copied from 
Global to Local.  This is done since these values will be 
accessed numerous times by many Threads throughout the 
execution.  As can be expected, the main Block loop for this 
kernel has each Block processing a subset of the creatures.  

Since the radius was already copied from Global it can be 
used to check for uninitialized creatures.  A zero radius is 
one of the tags for an uninitialized creature. 

One of the difficulties of this kernel turned out to be 
figuring out how to evenly divide up the work among the 
different Blocks.  The issue is that in order to check for 
collisions, one needs to calculate the distance between every 
pair of creatures.  There were two ways considered initially.  
First, have every creature check every other creature for 
collisions.  This method is the simplest but introduces 
wasted computations.  With it the distance between each 
creature ends up being calculated twice each cycle.  The 
other initial idea was to have each creature only check for 
collisions against creatures with IDs higher than itself.  The 
problem with this method is that it off balances the load of 
the calculations to the lower ID creatures.  Since the task is 
not completed until all calculations are done, this leaves the 
Blocks related to the higher ID creatures idle.  Ultimately, a 
good solution was found via doing several experiments in 
Excel with 2D tables.   

The solution was to have each creature check some 
number of the next creatures following it in IDs.  The IDs to 
check would wrap around at the end of the list.  The number 
of following creatures was different depending on whether 
the creature was in the lower or upper half of the IDs.  For 
the lower half, the number checked was half the total 
number of creatures rounded up to the next integer.  For the 
upper half, the value was instead rounded down.  This split 
allowed every possible unique combination of creatures to 
be considered only once and for the work to be divided 
nearly evenly among the Blocks. 

The Thread loop for this kernel uses the subset of the 
creatures figured out in the previous step.  Firstly, each 
Thread finds the square magnitude of the distance between 
that Block’s creature and the creature the Thread is 
checking.  If this is less than the total of the two creatures 
radii squared, the creatures are considered to be in collision.  
After taking the square root of the squared distance found 
early, the magnitude of the change in moment is found.  
Originally this calculation was far more complex.   

The initial plan was to not allow the creatures to overlap.  
This means that if two creatures were found to be 
overlapping, then they would be rewound to the exact 
moment of collision.  The changes in momentum due to a 
partially elastic collision would be calculated at this time 
and then the creatures would be fast forwarded to where 
they should have been after the collision.  The problem with 
this method is, while it can work in a sequential system, it is 
very difficult in a parallel system.  Ultimately, the problem 
lies in having to move the creatures to resolve the collisions.  
Every time a creature moves, it has the potential to create 
new collisions.  To solve this system with no overlap would 
require a complex system of equations or a numeric method 
to converge in on a solution.  The problem is that both of 
these are intensely time consuming and extremely difficult 
to implement in parallel.  These methods also have the 

Indiana University South Bend 
Department of Computer and Information Sciences May 5, 2014 

16 



Adam Call 

added risk of having no solution or never converging.  Due 
to complexity and both high and uncertain cost, it was 
decided to utilize a less accurate but more reliable method. 

The method chosen was to use a simple spring force in 
the direction of the vector between the creatures.  Back in 
the collision kernel, when this is calculated, it is also pre-
divided by the magnitude of the vector between the 
colliding creatures.  This is done so that later on the raw 
distance between the creatures can be used to find the 
components in the individual dimensions as opposed to 
having to calculate a unit vector.  Lastly, this delta 
momentum is atomically added and subtracted from the two 
creature’s tally of momentum changes due to collisions. 

When handling the collision, a special case must also be 
considered.  This special case is when the two creatures are 
nearly or exactly at the same position.  Having a total this 
close to zero causes rounding errors to be magnified and 
generally destabilizes the calculations.  The solution is to 
use the total of the two radii as the overlap and the square 
root of the number of dimensions as the vector magnitude.  
This effectively places the vector between the two creatures 
in the positive direction for every dimension.  This value is 
then added and subtracted from the creature’s tally of 
momentum changes due to collisions. 

5.3.9. ResolveMovement 

The Resolve Movement kernel is the primary physics 
processor of the simulation.  Its primary purpose is to 
calculate the new creature positions and momentums.  The 
Block division for this kernel is over the set of the creatures.  
Before the Block loop, the size of each dimension is loaded 
into shared to be used later when checking for wall 
collisions.  Dimension sizes are constant so they should only 
be loaded once before the Block loop.  The first thing 
checked is if the creature has a positive nonzero radius.  A 
zero radius is one of the ways creatures are marked as 
uninitialized.  Following this is the loading of the old 
creature velocity and current creature energy.  These will be 
needed several times so they are worth preloading. 

After the setup stage, several values will need to be 
calculated that unfortunately must be calculated sequentially 
by Thread zero.  Specifically, the total stored energy and 
velocity magnitude must be calculated.  This is a reduction 
operation performed over the number of energy types and 
the number of dimensions respectively.  The size of both of 
these reductions will tend to be small as the hardware is 
unlikely to be able to handle larger values.  For this reason, 
more parallel techniques were not used due to their 
overhead.  Lastly, for nontrivial velocity magnitude, the 
forces opposing velocity are calculated.  Specifically, the 
change in momentum due to friction and drag is calculated.  
This value is also preemptively divided by the velocity 
magnitude.  This value is originally a vector magnitude and 
thus must be multiplied by the unit vector of velocity to get 
the individual contributions in each dimension.  By 

preemptively dividing it by the velocity magnitude, an extra 
operation over each dimension is avoided later. 

With the sequential tasks completed, the primary Thread 
loop can run.  This Thread loop divides the work up over the 
individual dimensions in the simulation.  The change in 
momentum due to velocity opposing forces is applied first.  
Special care has to be taken when subtracting this value, 
because it cannot be allowed to change the sign of the 
momentum.  Momentum is set to zero in the cases where the 
sign would have changed.  Next, the added kinetic energy 
from the Move action is added.  Special care again has to be 
taken here to preserve the signs of the vectors through the 
square and square root operations.   

Collisions with the walls of the environment are handled 
next.  This calculation was originally being done with more 
scientifically correct equations.  Ultimately these equations 
proved to be too rigid to successfully use at the needed time 
scales.  The alternate, albeit less scientifically correct, was 
to use a simple spring constant and allow the creature to 
penetrate the wall.  The original method did not allow 
penetration.  This ultimately was what caused the method to 
fail as resolving one collision could cause others and so on.  
This turned the problem into a system of equations that was 
far more complicated than the simple physics needed in this 
simulation. 

Finally, the new momentum can be calculated along 
with the damage sustained from any collisions with other 
creatures or the walls.  For damage, a base defense was 
defined that subtracts from any damage taken down to a 
minimum of zero.  In later revisions, defense will be a 
whole system that can be actively controlled through 
actions.  The last values to be calculated are the new 
velocity and the new position.  Following this, the new 
values are copied back to Global or Shared Memory and the 
impulses from other kernels are cleared. 

Now out of the Thread loop, the total damage the 
creature sustained must be tallied by Thread zero.  If there 
was any damage sustained, the taken damage is divided 
among the creature’s different energy types relative to the 
quantity of each energy type.  Finally, the new row and 
column location of the creature in the global radiant energy 
map must be calculated for the new creature position. 

5.3.10. CheckReproductionAndDeath 

This kernel ultimately acts as an event manager.  Its 
primary purpose is to signal the CPU whenever a death or 
reproduction event happens.  Its secondary but ultimately 
more frequent task is to deduct the maintenance energy from 
each creature every cycle and check if that has caused the 
creature to die.  Again, the Blocks in this kernel each handle 
a subset of the total creatures.  The first task in the Block 
loop is to check that the creature has been initialized.  A 
creature status of NULL is used in this case as another flag 
marking uninitialized creatures that should be skipped.  The 
zero Thread then initializes the shared memory Booleans for 
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death and reproduction.  These values are only ever set true 
from this point forward so any potential write conflicts from 
Threads will not cause any problems.  Simply put, this 
means atomic operations are not needed on these shared 
variables.   

Following this is the first Thread loop of the kernel.  In 
this loop each Thread handles an energy type, checking if 
the current creature has sufficient energy to pay the 
maintenance cost.  If it does, the cost is deducted and stored 
back to Global.  Otherwise, the creature is marked as dead 
in Shared.  After syncing the Threads, any creatures that 
have not died are further checked for reproductions or 
voluntary death.  This time the Thread loop is over the 
creature’s nodes and begins by checking that the creature 
has not chosen to die.  For any active nodes, the death and 
reproduction tags are set if the node’s action is of the 
corresponding type.  Lastly, Thread zero updates the 
creature’s status in Global. 

6. EXPERIMENTAL RESULTS 
While the simulation works, it ultimately did not do 

quite what it had been designed to do.  The evolution of the 
creatures turned out to be too much for the hardware to 
handle.  Initially, the assumption had been made that the 
frequency of reproduction and death would be infrequent.  
This proved to be wrong.  In the actual simulation, an 
actionable event happened nearly every cycle once the 
creatures became numerous.  These events transfer control 
back to the CPU for the processing of reproduction and 
death events.  This processing is sequential and also 
involves memory allocation and deallocation in both the 
CPU and GPU.  This block of code ended up being the 
bottle neck of the simulation. 

There are several ways this bottle neck could be 
mitigated in future development.  Firstly, reproduction 
could somehow be made more costly to the creatures.  This 
should reduce the frequency of the reproduction code.  To 
lessen the memory management, all possibly needed 
memory could be pre-allocated in fixed arrays.  This would 
not be too much of a problem to do as the simulation 
already pre-checks the memory limits for the given 
simulation against the GPU.  Lowering the maximum 
number of creatures or nodes per creature would also help 
but at the cost of further limiting what the simulation can 
do.  The last option, which is the hardest and very 
impractical, is to somehow move the reproduction 
operations inside the GPU.  This method would necessitate 
the constant memory allocation method mentioned 
previously.  The main problem is that the DNA 
representation of the creatures would have to be stored and 
processed into the low level representation completely 
within the GPU.  This system would likely consume a 
significant portion of the Global memory. 

Even with the problems that limited the simulation, it 
still produced some interesting results.  The early runs were 

mostly focused in finding an initial state that would run for 
the full duration of the simulation.  The first simulations 
nearly always resulted in extinction.  In other words, the 
environment had not been made conducive to life.  This was 
solved by tweaking the ambient energy to give them more 
food.  This eventually led to too much food and the costs of 
nodes and links were increased to balance it. 

The next source of simulation failure was collision 
death.  This was caused by the constraints associated with 
motion being set such that motion was too easy.  This result 
showed itself in a cascade like manner.  The simulation 
would run normally until it reached a critical number of 
creatures.  Afterwards one collision would cascade into 
others and at the end nearly all creatures would be dead.  
The solution to this was to make movement harder and 
collisions not as harsh. 

At this points the world had been tuned enough to keep 
the creatures alive so evolution had time to work.  The first 
noticeable evolution was actuality sterility.  Since the initial 
creature was designed to be the bear minimum to survive, it 
was susceptible to mutations rendering its children sterile.  
This problem was recognized from the drastic decrease in 
cycle time and the nearly constant creature population.  The 
solution to this was to artificially inject reproduction back 
into the population.  If a full batch of cycles was executed 
without a reproduction event happening, a reproduce would 
be forced between some random creature and the initial 
creature.  This proved to be very effective at preventing the 
early simulation sterility problem. 

The second evolution of note actually allowed the 
creatures to become immortal via exploiting a bug in the 
simulation.  The exact mechanism of how they managed to 
do it was not found but what the creatures had evolved to do 
was have an energy of NaN.  Energy in the creatures is 
stored as a floating point number which have several special 
values.  One of these special values is Not a Number (NaN).  
The problem with NaN is that any comparison operation 
against a NaN will always return false.  The bug was in the 
logic for detecting a dead creature.  The check was testing if 
the creature had insufficient energy to pay the maintenance 
cost.  If this was true the creature was marked dead.  The 
problem is that with NaN, this comparison could never be 
true so even though the creature was dead it could not die.  
Even worse, this change would be passed on to its children.  
The solution was to reverse the comparison, so that it was 
instead checked if there was enough energy to pay the 
maintenance cost.  If this was false then the creature would 
be marked as dead.  This solution allowed any creatures that 
had developed a NaN energy to be removed from the 
population. 

7. CONCLUSION 
In the end, the simulation works, just not as well as 

expected.  At the beginning, the assumption was made that 
reproduction would be infrequent.  This unfortunately ended 
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up being incorrect.  The result was that the sequential 
reproduction algorithm consumed the majority of the 
processing time.  This bottle neck robbed any processing 
efficiency gained from using CUDA as the GPU sat idle.  
Even with this bottle neck the simulation still managed to 
show interesting results.  The most notable being the 
creatures evolving to find a bug in the system that allowed 
them to become immortal.  Future work for this simulation 
would mainly involve solving the reproduction bottle neck.  
This bottle neck made very high cycle count runs 
impractical, which limited the system’s time in which to 
evolve.  Ultimately the simulation did show creatures 
evolving in the limited cycles it could practically be run for.  
With better hardware and a better reproduce method, this 
simulation has the potential to do much more. 
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