
Secure Shared Continuous Query Processing
TR-20100916-1

Raman Adaikkalavan and Thomas Perez
Computer and Information Sciences

Indiana University South Bend

1700 Mishawaka Ave

South Bend, Indiana, USA

raman@cs.iusb.edu

September 16, 2010

Abstract

Data stream management systems (DSMSs) process continuous queries over streaming
data in real-time adhering to quality of service requirements. The data streams generated
from sensors, mobile phones, and other devices are processed by continuous queries to monitor
situations and to detect and react to events in (near) real-time. Though data stream manage-
ment systems are being used in multiple application domains (e.g., stock trading) the need
for processing data securely is becoming critical to several stream applications (e.g., patient
monitoring, battlefield monitoring). Existing systems that provide access control to maintain
data confidentiality use various techniques such as query rewriting, post-processing, and secu-
rity punctuations. These approaches have several limitations such as modifying query plans,
non-shared continuous query processing, checking a tuple multiple times, and introduction
of new security operators.

In this paper, we introduce a novel framework that uses three stages (preprocessing,
query processing, and post-processing) to enforce access control in DSMSs. We do not
modify the query plans nor introduce any new security operators, and check a tuple only
once irrespective of the number of active continuous queries. As opposed to existing systems,
our approach allows continuous queries to be shared when they have either same or different
privileges. In addition, our approach does not affect the DSMS quality of service improvement
mechanisms as query plans are not modified. We discuss the prototype implementation using
the MavStream DSMS. Finally, we discuss experimental evaluations using the MavStream
DSMS to demonstrate the low overhead and feasibility of our approach.

1 Introduction

Data Stream Management Systems (DSMSs) [1, 2, 3, 4, 5, 6] process continuous queries over
stream data in real-time. Some of the DSMS applications are: network traffic management [7],
health care [8], and network fault management [9]. Quality of Service (QoS) plays a major role in
data stream processing and some of the QoS improvements supported by various DSMSs include
[6, 10] capacity planning, scheduling strategies, and load shedding.

1



Several stream applications (e.g., situation monitoring applications such as patient monitoring,
airport monitoring, battlefield monitoring, and border security) require DSMSs to process data
securely and provide stream data confidentiality. For example, consider the patient monitoring
application where a patient’s critical condition requires an immediate response. Assume that data
streams are generated from continuous monitoring devices (e.g., heart rate monitor) attached to
patients (i.e., they can be in their home, or driving a car). The DSMS needs to detect abnormal
scenarios in an online fashion and take various actions (e.g., alert hospital emergency room). On
the other hand, if the DSMS cannot process the patient data securely, it will lead to violation of
data confidentiality and privacy laws (e.g., US Health Insurance Portability and Accountability
Act, EU Data Protection Directive). Nevertheless, if the DSMS cannot satisfy the application’s
quality of service requirements it can even lead to loss of lives.

Access control [11] models and mechanisms such as role-based [12], mandatory, and discre-
tionary, specify and enforce authorization policies (i.e, who can access what, when and how),
preserving data confidentiality. Existing systems [13, 14, 15] that provide access control in a
DSMS modify the underlying DSMS in a substantial way affecting scheduling, capacity planning,
and other runtime QoS improvement mechanisms. Also, these systems do not support sharing of
queries which in turn reduces the memory footprint and resource usage that are critical to the
DSMS to maintain quality of service. The limitations of these approaches are discussed in detail
in Section 8. As DSMSs process high-speed data in real-time, access control enforcement should
not introduce a lot of overhead. That is, the enforcement should not modify query plans which
can lead to the usage of more resources such as memory or processor time, affect query sharing,
and affect existing QoS optimizations.

In this paper, we introduce a novel three stage framework to enforce access control in a DSMS.
The first stage is the preprocessing stage where tuples are checked for access control before entering
the query processor. The second is the query processing stage where tuples are processed by
privileged queries. The third is the post-processing stage where tailored access control policies are
enforced and results are delivered to query creators. Our framework does not introduce any special
security operators. It supports sharing of complete queries (i.e., all operators in the query plan
are shared) created by two or more users active in the same role (user-level sharing), or active
in different roles (role-level sharing). We do not discuss sharing queries partially (system-level
sharing) where only a set of operators in a query plan are shared, and is outside the scope of this
paper. We discuss the issues involved in access control enforcement and present our framework.
We discuss the enforcement of Role-Based Access Control [12] (RBAC), in this paper, using our
framework. We also discuss the prototype implementation and experimental evaluations using the
MavStream [3, 5, 6] DSMS to demonstrate the low overhead and feasibility of our approach.

Overview: We discuss DSMS and RBAC in Section 2. Access control enforcement issues
are discussed in Section 3. User-level sharing is presented in Section 4, and role-level sharing is
presented in Section 5. Prototype implementation is discussed in Section 6, and experimental
evaluations are discussed in Section 7. Related work is discussed in Section 8. Conclusions and
future work are presented in Section 9.

2 Background

In this section, we briefly discuss data stream management systems (DSMSs) and role-based access
control (RBAC).

2



Figure 1: Data Stream Management System

2.1 Data Stream Management System (DSMS)

We have used the MavStream [3, 5, 6] DSMS to enforce role-based access control. A typical DSMS
[6, 4, 16, 17, 18] architecture is shown in Figure 1 and is used in the paper.

A Continuous Query (CQ) can be specified using specification languages [19], or as query plans
[4]. The CQs defined using specification languages are processed by the input processor, which
generates a query plan. Each query plan is a directed graph of operators (e.g., Select, Join). Each
operator is associated with one or more input queues1 and an output queue. One or more synposes2

[19] are associated with each operator (e.g., Join) that needs to maintain the current state of the
tuples for future evaluation of the operator. The generated query plans are then instantiated, and
query operators are put in the ready state so that they can be executed.

Based on a scheduling strategy (e.g., round robin, chain [20]), the scheduler picks a query,
an operator, or a path, and starts the execution. A query is not scheduled (or executed) when
there is no data, and is stopped when the user explicitly stops it. This is in contrast to a re-
lational database system, where a query is executed once over the snapshot of the current data
set, and the results are returned. The run-time optimizer monitors the system, and initiates load
shedding as and when required. Scheduling strategies and load shedding are part of the QoS im-
provement mechanisms that minimize resource usage (e.g., queue size) and maximize performance
and throughput. In addition, other QoS improvement mechanisms such as static and dynamic
approximation techniques [10] are used to control the size of synopses.

All the input tuples arriving to the DSMS from the stream sources are first processed by
the Data Source Manager. The number and type of attributes between the input tuples and the
stream schema must match. The Data Source Manager enqueues the incoming tuples to input
queues of all the leaf operators associated with the stream. In the directed graph of operators, the

1Queue data structures are used by the operators to propagate tuples. A queue is associated with an input
operator and one or more output operators.

2Synposes are temporary storage structures used by the operators (e.g., Join) that need to maintain a state.
They also act as the sliding window for that operator.

3



HRStr BPStr

th
1 − 10 : 00 : 00, 1, X12U, 85 tb

1 − 10 : 00 : 00, 1, Y23K, 130, 80
th

2 − 10 : 00 : 30, 1, X12U, 84 tb
2 − 10 : 00 : 30, 1, Y23K, 130, 80

th
3 − 10 : 01 : 00, 1, X12U, 84 tb

3 − 10 : 01 : 00, 1, Y23K, 132, 82
th

4 − 10 : 01 : 30, 1, X12U, 95 tb
4 − 10 : 01 : 30, 1, Y23K, 136, 90

th
5 − 10 : 02 : 00, 2, X44C, 71 tb

5 − 10 : 02 : 00, 2, Y21B, 120, 75

Table 1: Data Stream Tuples

data tuples are propagated from the leaf operator to the root operator. Each operator produces a
stream (can also be a relation) of tuples. After a processed tuple exits the query plan, the output
manager sends it to the query creators (or users).

The five major parts of a DSMS that are affected by access control enforcement are briefly
described below. These components will be used to discuss the issues and our approach in the
rest of the paper.

• Query Specification: Allows users to define queries.

• Query Plan Generation and Query Sharing: When an user specifies a CQ, the DSMS gen-
erates a query plan for that query. When more than one user creates the same query, the
DSMS shares the operators or query plan to minimize computations and resource usage [19].

• Input: All the arriving input tuples are enqueued to the leaf operators associated with the
stream.

• Query Processing: Each operator that is part of the query plan dequeues tuples from the in-
put queues, stores the tuples in the synopses (if required), processes the tuples, and enqueues
the result to the output queue. An operator can have more than one processing algorithm.
In operators, such as the Join operator, new combined tuples are created.

• Output: Each tuple enqueued by the root operator of a query plan is propagated to the user
who created the query.

2.2 Role-Based Access Control (RBAC)

Access control models and mechanisms allow subjects to access only authorized objects. There
are multiple access control models [11] - discretionary, mandatory, and role-based. Discretionary
allows subjects to own objects, and grant permissions to other subjects to access those objects. It
allows subjects to access objects if the authorized rules are satisfied. Mandatory allows subjects
to access objects using security axioms based on sensitivity level and categories.

Role-based access control assigns object (e.g., tuple, file) permissions to roles (e.g., doctor,
nurse, programmer, system administrator) that can then be assigned to more than one subject
(e.g., users). In any given session, a subject can activate one or more assigned roles. After
activating a role, whenever a subject creates an object, the active role is associated with that
object. Similarly, subjects are allowed to access objects only if the active role(s) have the required
permissions.

RBAC allows for better management of permissions, because if a person changes job roles then
it is easier to revoke roles from or grant roles to a user, rather than an entire set of permissions for
each user. RBAC does not provide a complete solution for all access control issues, but with its

4



rich specification [12], it has shown to be cost effective [21]. ANSI RBAC Standard [12] has four
functional components: Core, Hierarchical, Static Separation Of Duty, and Dynamic Separation
of Duty. In this paper, we will discuss the enforcement of Core or Flat RBAC, where a user is
assigned one or more roles and the user can activate the assigned roles to access objects.

3 Access Control Enforcement Issues

To enforce access control, objects are set with permissions, subjects are granted privileges, and
subjects are allowed to process only authorized objects. Assume, file payments.dat has the per-
mission (read to manager role), and user Bob is assigned roles (programmer, manager). When
RBAC is used, Bob is allowed to access the file payments.dat only when he is active in role
manager. Similarly, in a DSMS, subjects are the continuous queries that process data on behalf
of users, and objects are the incoming data stream tuples.

In this section, we will first discuss an example from the patient monitoring domain that will
be used in the rest of the paper. We then discuss the issues that need to be addressed when
enforcing access control.

Example: Patients have mobile medical devices that stream (i.e., send a tuple) their vitals
every 30 seconds. We define two data streams, and a continuous query. The schemas for the data
streams HRStr (heart rate) and BPStr (blood pressure) are shown below (timestamp (ts), patient
id (patID), and device id (devID)):

HRStr (ts, patID, devID, pulseRate)

BPStr (ts, patID, devID, systolic, diastolic)

The continuous query CQ1 shown below computes the average pulse rate and blood pressure
over a sliding window of 2 minutes. A set of input tuples are shown in Table 1.

CQ1: SELECT HRStr.patId, AVG(pulseRate), AVG(systolic), AVG(diastolic)

FROM HRStr [Range 2 Minutes], BPStr [Range 2 Minutes]

WHERE HRStr.patID = BPStr.patID

GROUP BY patID

Assume the following users and roles: User Bob is active in role doctor, and user Alice is
active in role administrator. There are two patients with patId 1 and patId 2, and their access
control policies are:

Patient 1 Policy: Allow access to doctors

Patient 2 Policy: Allow access to nurses

Below, we discuss the enforcement issues in detail.

• The stream schema definition should be modified to include security policies. For example,
patient 1 should be allowed to set his/her own security policy (e.g., policy 1) on their own
data. The granularity (stream, tuple, attribute) at which the policies are specified, and who
(system, data owner) can set the data policies should be analyzed.

5



• In the above example, CQ1 should be allowed to process only tuples that authorize CQ1. For
example, only queries created by users who are doctors should be allowed to access patient
1’s data. Thus, to enforce RBAC, a CQ must be associated with roles and these roles can
then act as that query’s privileges. The query specification component needs to be modified
to handle the role association.

• For each CQ specified, the DSMS generates a query plan consisting of operators, queues,
and/or synopses. The ways in which roles can be assigned to queries and the granularity
(query-level, operator-level) at which roles are assigned needs to be analyzed.

Multiple users who are active in the same role or different roles can create the same continu-
ous query. When a query is created by users active in the same role, all the instances produce
the same result, and we term this user-level sharing. When the users are active in different
roles then the queries produce different results based on the associated roles, however, they
have the same query plan. We term this role-level sharing. Let us assume that query CQ1 is
defined by two users active in role R1 and one user active in role R2. Since the queries are
the same, it is ideal to share the query plan between roles R1 and R2. If they are not shared
then each tuple will be processed by all the operators in each query separately. In order
to support sharing, query plan generation component should be analyzed and modified (if
required).

• Each operator within a query plan processes tuples using one or more algorithms. The
required access control checks for each tuple can be done at different places (at each operator,
within the query, or only once for a tuple), and each has different costs associated with it.
This plays a major role as the access control checks must be performed for each tuple and each
query. In the above example, tuples from both the streams can be sent to CQ1 irrespective of
the roles associated with the query. Tuples can be dropped by enforcing access control using
a special filtering leaf operator. But this can be expensive as all tuples are processed by all
the associated queries. In addition, this requires all the unauthorized queries to receive and
drop unauthorized tuples.

This is further complicated with role-level sharing. For example, when a query is shared
between different roles (e.g., doctor and nurse), the Join operator needs to combine tuples
based on the roles in addition to the join condition. Moreover, the storage of tuples in the
synopses by Join operator must also be analyzed.

• When a query outputs a tuple it must be sent to the user who created the query. With
role-level sharing, the query can emit tuples with different roles, and the tuples must be sent
to appropriate users. Thus, output component needs to be modified to handle access control
and query sharing.

4 Access Control Enforcement Framework:

User-Level Sharing

In this and Section 5, we will discuss solutions for all the issues raised in Section 3. We discuss
user-level sharing in this section, and role-level sharing in Section 5.

Our proposed access control enforcement framework is shown in Figure 2, and is used in the
below discussions. All the modified components, in comparison to Figure 1, are shown using boxes
with white background and italics text.

6



Figure 2: Access Control Enforcement Framework

4.1 Query Specification and Plan Generation

The specification of CQ1 shown in Section 3 is modified as shown below. The AS clause associates
the role doctor with CQ1. This authorizes the query to access any tuple that allow role doctor.
On the other hand, the system should verify that the user submitting the query has the role
doctor assigned and activated. With systems where users can send a query plan object, the above
approach does not work. Below, we discuss how we associate roles to CQs.

CQ1: AS doctor

SELECT HRStr.patId, AVG(pulseRate), AVG(systolic), AVG(diastolic)

FROM HRStr [Range 2 Minutes], BPStr [Range 2 Minutes]

WHERE HRStr.patID = BPStr.patID

GROUP BY patID

Whenever a user creates a CQ, an active role of the user is associated with the CQ. For
example, if CQ1 is created by a user active in role R1, then CQ1 is associated with role R1. This
allows the query CQ1 to process data streams, tuples or attributes that permit role R1. On the
other hand, situations where a user is active in more than one role are handled by asking the user
to choose one or more roles. We have added security catalogs to store the relationship between
the users, roles, and CQs.

In order to support sharing we assume that the underlying DSMS’s query plan generator
can identify two queries that are same [19], while generating the query plans. Once the system
identifies, we use the user-role-query catalog shown in Figure 4 (discussed in Section 4.3) to
associate roles and handle sharing.

7



4.2 Data Stream Input

Different approaches can be used to specify which roles have access to a particular stream, tuple
or attribute [13, 14, 15, 22, 23].

1. Access control policies can be pre-determined (e.g., based on the stream source). Each input
device can be associated with roles that can access the stream. This approach will be useful
when data providers use devices from the service providers. For example, HRStr defined in
Section 3 can be streamed from devices attached to inpatients.

2. Access control policies can be embedded within a tuple using a security attribute. It can also
be streamed together with each tuple using meta tuples. Each tuple in the data stream can
be associated with a role or set of roles specifying who can view this tuple or its attributes.
This approach is appropriate when data providers need to control their data. For example,
patients transmitting their data can control who can access their data. But this approach
requires data providers or their devices to have the knowledge of a particular organization’s
roles.

DSMS applications can have many different data providers and each provider can define
access permissions for their data using security attributes. We assume that there is some
mechanism available to convert provider’s permissions into a set of roles (or other appropriate
structure). We would also like to point to ontologies as a solution to this problem, but that
is outside the scope of this paper.

In this paper, we assume that each tuple contains a security attribute, which includes a set of
roles that define permissions for that tuple. Multiple roles can be assigned with both conjunction
(∧) and disjunction (∨) of roles. For example, stream HRStr and tuples t1h and t5h (from Table 1)
are modified as shown below. The tuple t1h allows access to role R1, and tuple t5h allows users who
are active in both roles R1 and R2.

HRStr(ts, patID, devID, pulseRate, roles)
th

1 : (10 : 00 : 00, 1, X12U, 85, R1)
th

5 : (10 : 02 : 00, 2, X44C, 71, R1 ∧ R2)

4.3 Stage I: Preprocessing

Figure 3(a) has Join and Select queries. The role-to-query mappings are shown in Figure 4. Query
CQ1 is shared by users U1 and U4 active in role R1. Query CQ2 is associated to user U2 active in role
R2. Assume that both CQ1 and CQ2 queries are exactly the same, but submitted by users active in
different roles. Since we discuss only user-level sharing, in this section, there are two instances of
the same query plan. In Figure 3(a), all tuples from stream HR (or HRStr from Section 3) are sent
to the queues associated with σ1, σ3, and σ5, when there is no access control. Similarly, tuples
from stream BP (or BPStr) are sent to σ2 and σ4.

When access control needs to be enforced, queries should be allowed to process those tuples
that they have permissions for. As an example, σ5 should process only tuples from stream HR

that allow role R2. This should be carried out with minimal overhead and without affecting QoS
optimizations. For example, introducing special filter operators to perform access control checks,
requires modification to the existing query plans. This affects the capacity planning and scheduling
of operators and CQs. Below, we discuss our approach that enforces access control in DSMSs.

8



Figure 3: Access Control Enforcement with User-Level Query Sharing

Figure 4: User-Role-Query Catalog

Continuous queries and incoming tuples have many-to-many relationship. Assume that m CQs
are associated with stream HRStr, n data items arrive each second via HRStr, and k (where k ≤ m)
CQs have the privileges to process each incoming tuple.

To enforce access control, either the set of k authorized CQs needs to be determined for each
incoming data tuple, or each tuple should be sent to all CQs and unauthorized tuples should be
filtered by the CQs. This is the most important step, as it enforces access control in two different
ways: “send tuples to authorized queries only” or “send all tuples and let the queries filter”. The
former is more advantageous than the later as the access check is performed only once per tuple.
In addition, with the latter approach, if each operator within a query checks for access permissions
then the number of checks will increase according to the total number of operators in the system.

Our framework follows the first approach. If authorized CQs can be determined and tuples can
be propagated from the data source manager to only authorized leaf nodes, as shown in Figure
3(b), there is no need for special filter operators at each leaf node. This protects tuples from
underprivileged CQs and operators, and reduces resource usage. For example, only tuples with
role R1 from streams HR and BP should be propagated to operators σ1 and σ2, respectively. It
is also critical that this access check operation, in the data source manager to determine which
queries can access the incoming tuple, should be carried out only once for each tuple.

In our framework, we have created a input routing structure to maintain query and role asso-

9



Figure 5: Preprocessing: Input Routing

ciations. The input routing structure design supports efficient insertions, modifications, deletions,
and retrievals. This is critical as the data source manager determines authorized CQs for every
arriving tuple using this structure. In addition, the input processor has to update the structure
every time a new CQ is created. The main difficulty in designing the structure arises due to the
many-to-many relationship between roles, CQs, and users

We have designed and developed a input routing structure shown in Figure 5(a), for storing
and maintaining role-to-query mappings and to support user-level sharing. The routing structure
is a hash of a hash set. The first hash’s key is the role and the value is the set of associated
queries. The value for the second hash is the count of active users who require results from that
query. For example, when tuple t1h (from Section 4.2) with role R1 arrives, the data source manager
retrieves all the queries that are mapped to role R1 using the routing structure in Figure 5(a). It
retrieves query CQ1, and enqueues the tuple t1h to the input queue of operator σ1 with role R1 as
its permission.

This design is efficient, because there is a role that maps to a set, and then each key in the
hash set is quickly retrieved. When a role is associated with a query, the count is incremented for
each user that is executing the query, and has the said role activated. If a user deactivates the
role or stops the CQ, the count is decremented. When a count is zero, the query can be disabled.

Thus, this stage supports user-level sharing and enforces access control by determining the set
of authorized CQs for each incoming tuple and by propagating the tuples to the authorized CQs.

4.4 Stage II: Query Processing

All the queues and sliding windows associated with operators store tuples with only one role due
to the user-level sharing. For example, input queue S1 shown in Figure 3 stores tuples with role
R1. Since tuples are enqueued to only authorized CQs, all the other operators in that CQ can
process the incoming tuple without any further checking of role permissions. Thus, if tuples can
be propagated from the data source manager to only authorized leaf nodes as shown in Figure
3(b), no additional checks are required to propagate this tuple to the internal nodes, and finally
to the authorized user. This is due to the fact that there is only user-level sharing, and the entire
query plan has the same role.

The preprocessing stage allows the DSMS to enforce access control prior to the propagation of
a tuple to leaf nodes. It moves access control enforcement outside the query plan and, therefore,
outside the query processor. As there is no modification to the query plan it neither modifies the
query operator semantics nor affects query processing. When compared to existing approaches,
our approach performs the security comparisons only once per tuple.

10



Figure 6: Access Control Enforcement with Role-Level Query Sharing

4.5 Stage III: Post-Processing

The root operator of each CQ enqueues the final output tuple to its output queue. Once enqueued
these tuples are handled by the post-processing stage. In this stage, the tuples are sent to the
users who have created the queries. Similar to the role-query catalog discussed in the preprocessing
stage, we use a query-role-user catalog to find the users or query creators. For example, when
the operator on1 enqueues a tuple to the output queue, the post-processor dequeues the tuple and
determines that it should be sent to users U1 and U4 (see Figure 4). Since each query has only
one role, the roles need not be checked in this stage.

5 Access Control Enforcement Framework:

Role-Level Sharing

In this section, we discuss RBAC enforcement when CQs are shared between users with different
roles. When role-level sharing needs to be supported, all the query operators that are part of the
query plan should be able to handle the tuples with one or more roles. Below, we discuss all the
components except query specification and data stream input, which were discussed in Section 4,
as they handle role-level sharing without any further modification.

Figure 6 illustrates role-level sharing of queries CQ1 and CQ2 from Figure 3. As shown, operators
σ1 and σ2 are combined to form the operator σ1, 33. As discussed earlier, we assume the underlying
DSMS’s query plan generator supports and provides this sharing.

3We have used ’,’ to illustrate that two queries are combined.

11



Figure 7: Tuple-Query Timestamp Cache

5.1 Stage I: Preprocessing

Even with role-level sharing, the data source manager can propagate tuples to appropriate CQs
using the techniques discussed in Section 4.3. For example, consider Figure 6(b) where tuples from
HRStr with roles R1 or R2 are propagated to operator σ1,3. On the other hand, the same tuple
cannot be sent to the same query more than once, even when multiple roles satisfy the access
control checks. This is possible when queries are shared by different roles, as each stream tuple
can authorize multiple roles. The newly created tuple-query timestamp cache shown in Figure 7
is used by the data source manager to prevent duplicate propagation. This structure and Figure
5(b) are used to retrieve the set of authorized CQs for a tuple.

The state before the arrival of tuple t1h is shown in the left side in Figure 7. Assume that t1h
enters the DSMS at 10:00:00 a.m. with roles R1 and R2. The input routing structure from Figure
5(b) is used to determine the authorized queries. Since t1h allows access to R1 and R2, first R1 is
processed. This retrieves CQ1, 2 from Figure 5(b). Now, the cache shown in Figure 7 is accessed
with CQ1, 2 as the key. Since the timestamp stored there is less than the t1h’s timestamp (i.e., this
tuple has not been propagated earlier), the cache is updated as shown in the right side in Figure
7. Now, R2 is taken for processing. When the input structure is invoked with R2 as the key, it
retrieves CQ1, 2 and CQ3. When the timestamp cache is invoked with CQ1, 2 as the key, the stored
timestamp is same as the tuple’s timestamp and the tuple id also matches. When CQ3 is used, the
timestamp on the left side is less than the tuple’s timestamp and the cache is updated as shown
on the right side. Since all the roles authorized by tuple t1h have been processed, it is enqueued to
left leaf operator of CQ1, 2 with roles R1, R2 and CQ2 with role R2, using the cache.

Thus, in our framework, access control is enforced before a tuple enters the query processing
stage using both the routing structure and timestamp cache.

5.2 Stage II: Query Processing

In order to support role-level sharing we have not modified any of the operators except Join (on)
and Aggregate. Below, we discuss the modifications made to the Join (on) operator processing.

5.2.1 Join (on) Query Operator

Assume a sliding window4 of size one tuple, and the following tuples (from Table 1):

4Sliding windows allow the blocking operators such as Join to produce continuous output.

12



Figure 8: Reduction of Joined Security Attributes

t1h (R1, 10:00:00am) & t2h (R2, 10:00:30am)
t1b (R2, 10:00:00am), t2b (R1, 10:00:30am), & t3b (R2, 10:01:00am)
When t1b arrives, it is propagated to σ2,4 shown in Figure 6(b) and then to right synopsis of

on1,2. Since the sliding window size is one tuple, when t2b arrives, should it replace t1b? Both these
tuples have two different roles, and replacing one with the other can lead to unintended query
results. We address this, in our framework, by partitioning the sliding window [19] based on the
roles. A tuple with multiple roles resides in multiple partitions. For example, sliding window
(synopses) attached to the on1,2 will have two partitions with roles R1 and R2. An arriving input
tuple with roles R1 and R2 will go to both the partitions R1 and R2. Thus, whenever a tuple
arrives it replaces tuples that have the same permission (i.e., in the same partition). The size of
the sliding window can be maintained for each partition or for the entire set of tuples.

On the other hand, when t1h arrives, it is enqueued to σ1,3 and finally to the left synopses
attached to node on1,2, shown in Figure 6(b). When t1b arrives, it is propagated to σ2,4, and then
to right synopsis of on1,2. Though on1,2 has tuples from both the sides, it cannot still join them,
as both tuples have different permissions.

In our framework, we introduce two different approaches to join tuples: 1) Exact Match: Wait
till all the tuples with matching permissions arrive in appropriate partitions, 2) Cumulative: Join
the existing tuples with cumulative permissions.

In the exact match approach, when tuple t1h arrives it is propagated to σ1,3. After processing,
σ1,3 enqueues it to on1,2 and is finally placed in the role R1 partition within the left synopses.
When t1b arrives it is propagated to σ2,4, then to on1,2 and is placed in the R2 partition of the
right synopses. Since these two tuples cannot match, the Join operator does not combine them.
When t2b arrives, it is propagated to σ2,4, then to on1,2, and is placed in the R1 partition. At
this point, there is one tuple in the left side synopsis and two in the right side. Since there are
two tuples that can match, t1h and t2b are joined. If an output tuple is produced it has R1 as its
permissions, and is enqueued to its output queue. This approach allows sharing of queries with
different permissions using partitioned windows and matching same roles.

The cumulative approach joins tuples regardless of the roles in the synopses. The output tuple
created by the Join operator will contain the cumulative roles as its permission set. We create
cumulative permissions using the Redundancy Law of Boolean Algebra. In the above example,
when all the join conditions are met, cumulative approach will create two tuples (t1h and t1b with
a cumulative permission Roles R1 AND R2) & (t1h and t2b with Role R1), as opposed to the exact
match approach that creates only one tuple (t1h and t2b with Role R1). The tuple created with

13



the cumulative permission can only be accessed by users who are authorized to all the included
roles. This approach can also combine tuples without partitioned windows. See Figure 8 for more
examples.

Both these approaches allow role-level sharing of queries and at the same time join tuples
without leaking or demoting any tuple permissions. When the size of the sliding window is
assumed to be ∞, the tuples produced by the cumulative approach subsumes the tuples produced
by the exact match approach. The permission set created by cumulative approach is exactly same
as the other approach or more restrictive. This is because, the cumulative approach joins tuples
with matching and non-matching permissions, whereas the exact match joins tuples with matching
permissions only.

5.3 Stage III: Post-Processing

The post-processing stage discussed in Section 4.5 is modified to handle role-level sharing. In
place of checking the users that are associated with queries, we first check the roles associated
with queries and then the users. Thus, a tuple exiting the root operator is processed for each role
that is part of the tuple permission set.

6 Prototype Implementation

We have modified the MavStream [3] DSMS to support RBAC. MavStream is developed using
Java programming language. In MavStream, the Data Source Manager contains a Feeder that
generates tuples from a file. After the tuple is generated, it is enqueued to the queue that is
associated to a leaf operator of a query plan. The final operator, in the query plan, has an
output queue that is then used by the post-processing stage. We have created catalogs to store
and maintain security related data. We have modified the input processor to handle security
specifications, storing/updating the catalogs, and to support user-level and role-level sharing. We
have modified the data source manager so that it will only enqueue privileged tuples to the input
queue of the leaf operators (see Algorithm 1 for user-level sharing). The Join operator algorithms
have been modified to handle sharing (see Algorithm 2 for cumulative approach role-level sharing).
Since the MavStream system does not support partitioned sliding windows, we have implemented
the cumulative approach discussed in Section 5. Finally, we have modified the CQ output manager
to route the tuples to the authorized users.

6.1 Correctness

User-Level Sharing: Each tuple is filtered by the preprocessing stage and is enqueued to only
authorized CQs. Each tuple contains exactly the role that authorizes the CQs. Since each CQ is
only shared between users and not roles, it can process only tuples with a particular role. The post-
processing stage sends the resulting tuples to users with roles specified in the tuple. The access
control is enforced before a tuple enters query processing. Thus, no tuple contains more than one
role and no tuple can be processed by underprivileged queries in our framework, guaranteeing
correctness.

Role-Level Sharing: Tuples can contain more than one role if the authorized CQs are
shared between roles. This does not affect other operators except Join and Aggregate. Both
the approaches used by the modified Join operator creates tuples with exact matching roles or
cumulative roles. Though the permission set is modified when non-matching roles are combined in

14



Algorithm 1: User-Level Sharing - Input Routing in Stage I

Require: A data tuple ti with a role set R

PROCEDURE ROUTE TUPLE(ti)
queries = new Set()
for each r ∈ R do

queries.AddAll(GetPrivilegedQueriesSet(r))
end
for each q ∈ queries do

b = GetAssociatedBuffer(q)
if b.HasNotAlreadyBeenEnqueued(t) then

q.Enqueue(t)
end

end

Algorithm 2: Role-Level Sharing - Simple Join using Cumulative Approach

/* ti can be recognized as coming from the left or right branch of the

operator tree */

Require: A data tuple ti with a role set R

PROCEDURE Join(ti)
\\ dequeue from input queues
if ti is the left tuple then

\\ add ti to appropriate partitions in Synopsis.Left
for each t ∈ Synopsis.Right do

\\ Check Join Conditions
\\ If True, Create a new combined tuple with cumulative permissions

end

end
if ti is the right tuple then

\\ add ti to appropriate partitions in Synopsis.Right
for each t ∈ Synopsis.Left do

\\ Check Join Conditions
\\ If True, Create a new combined tuple with cumulative permissions

end

end

15



the cumulative approach, it only further restricts the tuple usage, and does not leak information.
In other words, the cumulative approach subsumes the exact match approach. Thus, a tuple that
exits the preprocessing stage has the same or restricted set of permissions when it is output from
the root operator, guaranteeing correctness.

7 Experimental Evaluations

In this section, we discuss the experimental setup and evaluations.

7.1 Setup

For experimental evaluations, we ran the MavStream system on a machine with the Linux Fedora
10 64-bit Operating System, Intel Core2 Duo 2.0GHz processor, and 4GB of RAM. The datasets
were obtained from the MavHome project [24]. Each test was executed three times for the eval-
uations. Standard deviation for all the tests was less than a second. The experiments used two
input streams (each stream with 500K to 1 Million Tuples), a query with Join (on) and Project
(Π) operators, Round Robin Priority scheduling strategy, and no load shedding.

• Datasets DS1 and DS4 had tuples with only role R1 in each stream. The selectivity of the
input routing was 100%.

• Datasets DS2 and DS5 had tuples with roles R1, R2, and R3. The selectivity of the input
routing was at 100%. Five users were active: three in role R1, two in R2, and two in R3, and
all of share the same query.

• Datasets DS3 and DS6 had a uniform random distribution of six roles: R1, R2, R3, R4, R5 and
R6. The selectivity of the input routing was at 50%, as the same five users and three roles
were used (i.e., tuples with roles R4, R5 and R6 were dropped at the data source manager).

Results can be viewed in Figure 9. Each experiment builds on the previous to show costs.

• Experiment 1 (Exp#1 ): We captured the current system runtime as a control, without
using any access control using data sets DS1 and DS4. Other data sets were not used as
they involve access control.

• Experiment 2 (Exp#2 ): We ran the DSMS with user-level sharing enabled using data sets
DS1 and DS4. This included all the three stages.

• Experiment 3 (Exp#3 ): We ran the DSMS with role-level sharing enabled. This included
all the three stages with the modified Join operator algorithm based on the cumulative
approach.

7.2 Analysis

No Access Control: Exp#1 was conducted using datasets DS1 (1 Million Tuples) and DS4 (2
Million Tuples). The system took 50.420 seconds to process DS1 and 96.652 seconds to process
DS4.

16



Figure 9: Experimental Results

User-Level Sharing : Exp#2 evaluated user-level sharing. Three users were active in role R1,
and issued the same query. The system took 50.811 seconds to process DS1 and 96.652 seconds
to process DS4. As shown in Figure 9, overhead due to our access control enforcement (Exp#2)
when compared to no access control (Exp#1) is 0.7% for dataset DS1 and 2% for dataset DS4.
If there was no user-level sharing, the system would have executed 3 instances of the query and
the total time should have been 3 times the current time, as the input routing selectivity was at
100%. With ’n’ users, it will be ’n’ times the current runtime.

Role-Level Sharing : We evaluated the overhead caused by role-level sharing using Exp#3.
With 100% selectivity, Exp#3 took 52.586 seconds for dataset DS2 and 103.355 seconds for DS5.
When comparing Exp#3 on DS2 and Exp#1 on DS1 (no access control), it is an overhead of
approximately 4%. When comparing Exp#3 on DS5 and Exp#1 on DS4, the overhead is approx-
imately 6.9%. If there were no sharing, then there should have been seven instances of the same
query running, with a total runtime that is seven times rather than 6.9%.

Number of Tuples Processed: The number of tuples processed by the system is also reduced
based on the selectivity of the input routing. The total number of tuples processed by the CQs
with DS3 and DS6 are reduced by 50% (approximately) since the selectivity of the input routing
operator was set at 50%. This is in contrast to the existing approaches where tuples are not
filtered before the query processing.

8 Related Work

Currently, there are three security architectures presented in the literature. In this section, we
will highlight some of the problems with those architectures.

Punctuation-based enforcement of RBAC over data streams is proposed in [22, 13]. A punc-
tuation is a meta tuple, and can be either a security or query punctuation. Access control policies
are transmitted every time using one or more security punctuations before the actual data tuple
is transmitted. For example, when a user has an emergency situation, the device first sends the
policies that allow emergency room physicians to access the tuple and then sends the data tuple.
If the data tuple arrives without policies it will be removed from the system. Query punctuations

17



define the privileges for a CQ. Both punctuations are processed by a special filter operator (stream
shield) that is part of the query plan. This operator stores the privileges of the CQ to which it is
attached, and checks it against the security punctuations of the data tuple. If the access check is
successful, the data tuples that follow the punctuations are allowed to pass, otherwise, the data
tuples are dropped. Major limitations of this approach are:

1. A set of these filtering operators are placed throughout the query plan. Thus, a data tuple
and its corresponding punctuations entering the system are routed to all queries (authorized
and unauthorized) and are dropped if the access check fails. This is not efficient, as punctu-
ations have to be checked and dropped, including tuples, in all the CQs even if they do not
have the required permissions. This does not follow the principle of least privilege as under
privileged CQs receive over privileged tuples and are eventually dropped by the special filter
operators.

2. This approach also modifies the query plan affecting the scheduling strategies and load
shedding provided by the underlying system. The addition of special operators affect the
QoS requirements significantly due to the redundant and unnecessary computations.

3. Security punctuations create a large overhead when many data providers submit data con-
currently. If there is one or more punctuations per data tuple, which is usually the case
with DSMS applications (e.g., location-based consumer services, health-care monitoring),
and many concurrent data submitters, then there is a lot of overhead. This approach of
streaming policies and data may cause a major bottleneck in the system and slow down the
system substantially, as the system has to handle both the access control policy streams and
data streams. and

4. This approach does not support sharing of queries between different roles.

The second architecture focuses on supporting RBAC via query rewriting techniques [23, 14]
and is built on top of Stream Base [25]. This work introduces two operators for providing access
control. To enforce access control policies, query plans are rewritten and policies are mapped to a
set of map and filter operations. When a query is activated, the privileges of the query submitter
are used to produce the resultant query plan. The major limitations of this approach are the
modification of query plans and embedding access control within the query plan, affecting QoS
optimizations and preventing query sharing. This approach also does not follow principle of least
privilege as it processes underprivileged tuples. This places a significant burden on the QoS of the
DSMS.

The final architecture [15] uses a post-query filter to enforce access control policies. The filter
applies security policies only after query processing but before a user receives the results from the
Borealis DSMS [16]. The major limitations of this model are: 1) Access control is only applied at
the stream level i.e., all tuples and attributes of a tuple are assumed to be visible if the stream
is visible to the user submitting the query. 2) All tuples have to be processed by all queries and
finally filtered before the result is shown. This increases the load on the DSMS and affecting the
QoS significantly.

9 Conclusions and Future Work

In this paper, we discussed various issues that need to be addressed when enforcing access control,
with user-level and role-level sharing, in DSMSs. We discussed how access control affects tuple

18



input, storage, processing and output. We then discussed our approach to enforce access control
without introducing special operators, rewriting query plans, modifying query plans, or affecting
QoS improvements. Our approach allows CQ sharing and prevents underprivileged CQs from
processing/filtering tuples. We have shown how the enforcement can be moved outside of the query
processing, while supporting sharing, reducing the cost of access control enforcement. We discussed
two different approaches to join tuples for role-level sharing. We have shown the feasibility and
demonstrated the low overhead of our approach. It enforces access control with a overhead of less
than 2% with user-level sharing and 6% with role-level sharing over 2 Million tuples, and also
reduced resource usage by preventing under-privileged tuples from entering the query processor.

As part of the future work, we are investigating the support of attribute-level access control,
system-level sharing, optimize Join processing, and the implementation of exact match approach.
We are also investigating the use of Stanford STREAM system to demonstrate the wider applica-
bility of our approach.

10 Acknowledgments

We would like to thank Prof. Sharma Chakravarthy for providing the MavStream DSMS.

References

[1] S. Babu and J. Widom, “Continuous queries over data streams,” in Proceedings, International
Conference on Management of Data, September 2001, pp. 109–120.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models and Issues in Data
Stream Systems,” in Proceedings of ACM SIGMOD International Conference on Principles
of Database Systems, June 2002, pp. 1–16.

[3] A. Gilani, S. Sonune, B. Kendai, and S. Chakravarthy, “The Anatomy of a Stream Processing
System,” in BNCOD, 2006, pp. 232–239.

[4] D. Carney, U. Cetintemel, et al., “Monitoring streams - a new class of data management
applications,” in Proceedings, International Conference on Very Large Data Bases, September
2002.

[5] Q. Jiang, R. Adaikkalavan, and S. Chakravarthy, “MavEStream: Synergistic Integration of
Stream and Event Processing.” in IEEE International Workshop on Data Stream Processing,
ICDT, Jul. 2007.

[6] S. Chakravarthy and Q. Jiang, Stream Data Processing: A Quality of Service Perspective Mod-
eling, Scheduling, Load Shedding, and Complex Event Processing, ser. Advances in Database
Systems , Vol. 36. Springer, 2009.

[7] S. Babu, L. Subramanian, and J. Widom, “A data stream management system for network
traffic management,” in Proceedings of the Workshop on Network-Related Data Management
(NRDM 2001), May 2001, pp. 685–686.

[8] C.-M. Chen, H. Agrawal, M. Cochinwala, and D. Rosenbluth, “Stream query processing
for healthcare bio-sensor applications,” in Proceedings, International Conference on Data
Engineering. Washington, DC, USA: IEEE Computer Society, 2004, p. 791.

19



[9] Q. Jiang, R. Adaikkalavan, and S. Chakravarthy, “NFM i: An Inter-domain Network Fault
Management System,” in Proceedings, International Conference on Data Engineering, Tokyo,
Japan, Apr. 2005, pp. 1036–1047.

[10] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Olston,
J. Rosenstein, and R. Varma, “Query processing, resource management, and approximation,”
in Proceedings, Conference on Innovative Data Systems Research, 2003, pp. 245–256.

[11] M. Bishop, Computer Security: Art and Science. Addison-Wesley Professional, Dec. 2002.

[12] RBAC Standard, ANSI INCITS 359-2004, ANSI INCITS 359-2004, InterNational Committee
for Information Technology Standards, 2004.

[13] R. V. Nehme, E. A. Rundensteiner, and E. Bertino, “A security punctuation framework for
enforcing access control on streaming data,” in Proceedings, International Conference on Data
Engineering, 2008, pp. 406–415.

[14] B. Carminati, E. Ferrari, and K.-L. Tan, “Enforcing access control over data streams,” in
Proceedings, ACM Symposium on Access Control Models and Technologies, 2007, pp. 21–30.

[15] W. Lindner and J. Meier, “Securing the borealis data stream engine,” in IDEAS, 2006, pp.
137–147.

[16] D. J. Abadi, Y. Ahmad, et al., “The Design of the Borealis Stream Processing Engine,” in
Proceedings, Conference on Innovative Data Systems Research, 2005, pp. 277–289.

[17] B. Babcock et al., “Models and issues in data stream systems.” in Proceedings, International
Conference on Principles of Database Systems, June 2002, pp. 1–16.

[18] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U. Srivastava,
and J. Widom, “Stream: The stanford data stream management system,” Stanford InfoLab,
Technical Report 2004-20, 2004. [Online]. Available: http://ilpubs.stanford.edu:8090/641/

[19] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query language: semantic founda-
tions and query execution,” VLDB Journal, vol. 15, no. 2, pp. 121–142, 2006.

[20] B. Babcock, S. Babu, R. Motwani, and M. Datar, “Chain: operator scheduling for memory
minimization in data stream systems,” in Proceedings of the 2003 ACM SIGMOD interna-
tional conference on Management of data, June 2003, pp. 253–264.

[21] The Economic Impact of Role-Based Access Control, RTI Project Number: 07007.012,
National Institute of Standards and Technology (NIST), 2002. [Online]. Available:
http://www.nist.gov/director/prog-ofc/report02-1.pdf

[22] R. V. Nehme, H.-S. Lim, E. Bertino, and E. A. Rundensteiner, “StreamShield: A stream-
centric approach towards security and privacy in data stream environments,” in Proceedings,
International Conference on Management of Data, 2009, pp. 1027–1030.

[23] J. Cao, B. Carminati, E. Ferrari, and K.-L. Tan, “Acstream: Enforcing access control over
data streams,” in Proceedings, International Conference on Data Engineering, 2009, pp. 1495–
1498.

20



[24] Q. Jiang and S. Chakravarthy, “Data stream management system for MavHome,” in Proceed-
ings, Annual ACM SIG Symposium On Applied Computing, 2004, pp. 654–655.

[25] StreamBase, http://www.streambase.com.

21


