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Abstract

In this paper we present an algorithm for facet detection in graphs. We define the facets as simple

cycles in the graph minimizing the length. First, we present and analyse an algorithm for cycle detection

based on the breadth-first search. Next, the facet detection algorithm starts with the local structure

of simple cycles intersecting in a particular vertex of the graph. We then reduce the problem of facet

detection to an instance of the Traveling Salesman Problem in an induced co-cyclic graph and use a

method inspired from the minimum spanning tree to construct a circuit solution. We show some results

of our algorithm and introduce some applications for it.

1 Introduction

In this paper we present an algorithm for facet detection in a graph, defined in terms of a set of simple cycles
intersecting in a particular vertex of the graph. The goal of the algorithm is primarily to emphasize the
local structure in the graph surrounding a particular vertex, which can provide a better understanding of the
graph by visualization. Other applications are also foreseeable for this algorithm, for example, computing
the total surface of the graph.

Facet detection algorithms have many applications. Recently, they have been employed for detecting and
tracking features in 2D images and in animations [13], and for automatic object recognition [5].

It is often the case that objects are initially defined as clouds of points [1], in particular when they repre-
sent implicit surfaces or when they are captured by a 3D scanner. The most often, a mesh is reconstructed
from the cloud of points which can take an intermediate step in the form of a graph [3]. In this study, a cloud
of points obtained from a 3D scanning device is first transformed into a graph. A second step constructs the
surface by a facet detection algorithm.

A related problem is the edge detection in images [14], which is often based on pixel analysis. The
facet detection methods consider the facets as collections of edges with particular properties, for example,
convexity in terms of polygons. Zheng and Tian [20] for example, start with an edge detection algorithm,
followed by facet detection using a combination of gradient based parametric facet detection and zero crossing
for the edges. In a related study [12], features are extracted by hysteresis thresholding followed by a step
consisting in reconstructing a minimum spanning graph to emphasize contours for 2D and 3D data. In this
study, the cycles represent an important criterion to recognizing features.

The idea of feature extraction is closely related to the notions of facet and polygon. Iqbal and Aggarwal
[9] propose detecting structures in two dimensional images by extracting line segments and then building a
cotermination graph. The method employs graph theory to detect polygons in the image as fundamental
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circuits in the graph. A maximum spanning tree is used for the detection, making use of the spatial
representation of the graph.

In this paper we propose a method for extracting local structures in graphs. We start from the premise
that the graph represents a solid object with a well-defined surface. We assume that the surface itself is not
known, and that we do not possess information about the geometry of the graph. We are interested in the
intrinsic local structure of the graph outside of the geometric considerations.

The algorithm we propose follows the general idea that a facet is a simple cycle in a graph with some
properties of minimality. In a related paper [3], Azernikov and Fischer start from an edge to detect a facet,
using properties of convexity of the resulting polygon and minimizing the length of the cycle. We follow
a different approach, going from all the simple cycles intersecting in a vertex to selecting those that might
define the actual surface. Our approach differs from that of related work in the sense that we do not use the
geometric representation of the graph, but only the internal structure in terms of edge connections.

Our algorithm focuses on one vertex at a time and detects the local polygons that the vertex belongs to
using a minimal cycle method. The set of all such cycles are meant to represent the surface of the object
represented by the graph. They constitute a minimal neighborhood of the object that is topologically open.
In the current form we do not consider information about the weights in the graph, but the algorithm can
be extended to find the minimal cycle set in terms of weights.

Starting from all the simple cycles containing a vertex, we build the structure of a co-cyclic graph. Similar
in nature to a dual graph [18], the co-cyclic graph contains edges for pairs of vertices that belong to the
same simple cycle. A Hamiltonian circuit in the co-cyclic graph provides the local structure of the surface
in the original graph.

The main application of this algorithm is to emphasize the local structure in the graph for purposes
of visualization. As a potential additional application, it can be used to compute the total surface of the
graph. Efficient solutions have been proposed for meshes [19], starting from the assumption that the polygons
composing the surface have already been defined. Our algorithm can be used as a preliminary step for this
problem.

2 Cycle Detection and Co-Cyclic Graph

Let G = {V,E} be an undirected graph with n vertices and m edges. Two vertices belonging to the same
edge are called adjacent. An edge is incident in a vertex if the vertex belongs to the edge. We extend this
notion to a path and thus, also to a cycle: a path is incident in a vertex if the vertex belongs to it. A cycle
is called simple if it doesn’t contain any subcycle.

Definition 2.1. Two vertices in a graph are co-cyclic if they belong to a common simple cycle.

Thus two vertices are co-cyclic if there is a simple cycle that is incident in both of them. In particular,
two adjacent vertices u and v are always co-cyclic because the cycle uvu is simple. We call such cycles trivial
and they are not the focus of our algorithm.

We use the notion of co-cyclic vertices in the sense most often used in chemistry and not in relation to
the notion of cocyle in a graph [18].

We will start by analyzing the subset of the cycle space containing all the simple cycles that intersect in
a given vertex of the graph, or origin. From this subset we can construct a weighted co-cyclic graph where
an edge is drawn between two vertices if they are both adjacent to the origin and co-cyclic. The weight of
the edge will be the length of the smallest cycle containing both vertices.

The co-cyclic graph can be used to extract the cycle structure or the facets that intersect in the origin.
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2.1 Cycle Detection

The issue of detecting a cycle in a graph is a simple algorithm and an early description can be found in [7]
We start by presenting a cycle detection algorithm based on the breadth-first search (BFS) and prove some
of its important properties. We will consider the case of an undirected graph. For a directed graph the
depth-first search (DFS) is a more appropriate algorithm.

Existence

An undirected graph with at least one edge contains at least one simple cycle using only that edge in
both directions. It contains one such cycle for every edge. We are interested in the existence of cycles of
length greater than two, excluding such trivial cases. The algorithm detecting non-trivial cycles in a graph
can be based on the breadth-first search which is linear over the number of edges m.

Sufficient condition. In an acyclic undirected graph, m < n. This is a necessary but not sufficient
condition for the graph to be acyclic. A graph can have n − 1 or less edges, but be composed of several
connected components and still present a non-trivial cycle. For example, the graph in Figure 1 has 5 vertices
and 4 edges and presents a non-trivial cycle.

Figure 1: A non-trivial cycle in a graph where m = n − 1

Thus, we can express a sufficient but not necessary condition for the existence of a non-trivial cycle in
the graph as

m ≥ n (1)

In the case where the sufficient condition is not true, the number of edges is less than the number of
vertices, so the algorithm verifying the existence of cycles is linear over n.

Detection Algorithm

The algorithm detecting non-trivial cycles requires a small modification to a classic breadth-first search
(BFS) or depth-first Search (DFS) [17]. This algorithm represents a test that will always return true in the
case where a non-trivial cycle exists in the graph. Thus, it implicitly contains the necessary condition for
the existence of a non-trivial cycle in the graph. Because of its constructive nature, at the same time it can
be used to build a set of cycles in the graph.

Both the BFS and DFS can be used for this purpose. They both present the property of visiting every
vertex only once and every edge only once. For the purpose of construct the set of simple cycles of minimal
length that can be part of the object surface, the BFS is a better choice.

It is a known fact that when either of these algorithms encounters the same vertex twice, a cycle has
been closed in the graph. If the graph is undirected, in many cases this happens when closing a trivial cycle,
meaning when the algorithm attempts to go back on a visited edge. For example, if the algorithm considers
the vertex u first, and then its neighbor v, then in an undirected graph u is also a neighbor of v. When the
neighbors of v are processed in a later step, since u has been visited before, the algorithm might prematurely
conclude on the existence of a cycle. In this case it is a trivial one: uvu.

Necessary condition. Thus, the necessary condition for the existence of a non-trivial cycle in the graph
is that in the execution of the BFS or DFS, starting from a vertex v we encounter a neighbor u that has
already been visited, such that u is not the predecessor of v in the search:

u 6= pred(v) (2)

3



For the purpose of our algorithm, we have chosen the BFS because it is more likely to detect simple
cycles of minimal length containing the origin of the search. The BFS starts from an origin vertex and
explores all of the vertices in the order of their distance from the origin. Typically, a queue is used to store
the visited vertices that may still have non visited neighbors. When a vertex is processed, its neighbors that
have not been visited yet are added to the back of the queue. If we need to store the path from the origin to
a destination vertex in the graph, then for each vertex we record its predecessor in the search. Traditionally,
the BFS marks the visited vertices to avoid cycles. The same mark can be used to detect the cycles in our
case.

Let us denote by o the origin of the BFS. Let us consider a particular step of the BFS where the current
vertex is x and y is one of its neighbors. The following three cases can occur:

1. y has not been marked yet. In this case y is a vertex not yet visited and the BFS can continue the
search by adding it to the queue and marking it.

2. y = pred(x) or x = pred(y). In this case the algorithm has found a trivial cycle by retracing one of its
steps. In this case we can ignore the vertex y.

3. Otherwise y is a vertex that has been encountered before on a different path. Thus, by concatenating
the paths from the origin to these two vertices and the edge to construct a cycle.

If our goal is to detect the existence of non-trivial cycles in the graph, then encountering the third case
described above is a necessary and sufficient condition.

To construct the actual cycle, we first construct the path from o to x by following the predecessors
backward to the origin o and by reversing the order. Then we continue this path with the edge xy and the
entire path from y to o. The cycle can then be described as o → x − y → o.

It can happen that the paths from o to x and to y have a part in common. Since every vertex has a
unique predecessor in the search, the cycle we obtain is either simple, or composed of a simple cycle not
containing the origin concatenated with a trivial one. In the second case, the simple cycle thus extracted
cannot be added to the set of simple cycles incident in the origin.

The cycle detection algorithm, called Breadth-First Cycle Detection (BFCD), presented on the next page,
builds a set of simple cycles incident in the origin o. It can be used to detect a cycle by returning true when
the first non-trivial cycle is detected. In the case where the first connected component does not contain a
cycle, the algorithm must restart from another non-marked origin until the graph is completely visited or
until a cycle is detected.

2.2 Induced Co-Cyclic Graph

Let us recall from Definition 2.1 that two vertices in the graph are called co-cyclic if they belong to the same
simple cycle.

Theorem 2.2. If two neighbors of a vertex o are co-cyclic, then there exists a simple cycle containing o and
both of these vertices.

Proof. Let the two vertices be u and v. Suppose that we have a simple cycle containing both u and v but
not o. We can express the cycle as uP1 vP2 u, where P1 and P2 are paths of any length. Then we can replace
the path P1 with o since uo v is a path. The cycle we obtain, uo v P2 u is still simple because neither o nor v
belongs to P2. This simple cycle satisfies the property we were looking for. The configuration we described
is illustrated in Figure 2. �
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Figure 2: Simple cycle containing u, v, and o

BFCD Algorithm

for every vertex v in the graph

mark[v] = false;

Q = empty_list();

Q.push_back(o);

while (!Q.is_empty()) {

x = Q.pop_front();

for every y, neighbor of x {

if (!mark[y]) {

mark[y] = true;

pred[y] = x;

Q.push_back(y);

}

else if (x != pred[y] && y != pred[x]) {

cycle = empty_list();

cycle.push_front(x);

u = pred[x];

while (u != o) {

cycle.push_front(u);

u = pred[u];

}

cycle.push_front(o);

cycle.push_back(y);

u = pred[y];

while (u != o) {

cycle.push_back(u);

u = pred(u);

}

cycle.push_back(o);

if (simple(cycle))

add cycle to set;

}

}

}

Definition 2.3. Let o ∈ V be a particular vertex in the graph for which we want to extract the facet structure.
Let Cs(o) be the set of all the simple cycles containing o. Let Ho = {Ao, Eo,Wo} be the weighted co-cyclic

graph induced by the vertex o defined the following way:
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Ao = {v ∈ G | ov ∈ E} (3)

Eo = {vw | ∃c ∈ Cs(o), v ∈ c, w ∈ c} (4)

Wo(vw) = min{length(c) | c ∈ Cs(o)} (5)

Thus, the set of vertices in the co-cyclic graph is the set of neighbors of o in the original graph. An edge
is defined in the co-cyclic graph between two vertices u and v if they are co-cyclic. The weight of the edge
is defined as the length of the shortest simple cycle containing the origin and the two vertices. Since the
original graph is undirected, the co-cyclic graph is also undirected.

The idea of the co-cyclic graph is closely related to the dual graph [6, 18]. Dual graphs define a vertex
for each facet of the graph, each of them being a simple cycle in the graph. An edge is drawn between two
facets if they have an edge in common. A vertex in the dual graph corresponds to an edge in the co-cyclic
graph. While the dual graphs only exist for planar graphs, co-cyclic graphs can be defined for any graph.

Theorem 2.4. The relation defining the edges of Ho in Equation 4 is transitive.

Proof. Let y, v, w ∈ V such that y and w are co-cyclic, as well as w and v. Let us denote the two cycles
starting from o and containing these vertices by o v C1 w o and o w C2 y o, where C1 and C2 are paths of
any length. Let us suppose that v 6∈ C2 and y 6∈ C1, otherwise we would already have found a simple cycle
containing y, v, and o.

Then the cycle obtained by merging these two cycles, o v C1 w C2 y o contains both y and v. If the cycle
is not simple, any repeated vertex must be on the path C1 v C2, since neither o, nor u or w are present on
that path. Thus, we can remove subcycles included in this path until the cycle is simple. Figure 3 illustrates
the configuration we described.

Figure 3: Two cycles that can be merged

Thus, we have shown that

yv ∈ Eo ∧ vw ∈ Eo ⇒ yw ∈ Eo � (6)

The consequence of the transitivity for the co-cyclic graph H is that its connected components are com-
plete subgraphs.

Example

Let us take the case of a graph with the structure of a hypercube and the origin O as shown in Figure 4
left. This graph is interesting from the point of view of our algorithm because it represents a four-dimensional
geometric object in which there is no obvious simple cycle fan that surrounds each vertex.

There are four vertices in the graph adjacent to O and they are labeled A,B,C,D. Each of them is
connected to all of the others by a simple cycle of length four representing a facet of the hypercube. The
co-cyclic graph Ho for this particular vertex is shown in Figure 4 right.
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Figure 4: A hypercube, the vertices adjacent to O (left) and the induced co-cyclic graph (right)

Co-Cyclic Graph Closure

The cycle detection algorithm presented in Section 2.1 does not always detect the complete subspace of
simple cycles Cs(o). An intersection of edges in a vertex y as described in the algorithm generates a single
simple cycle in the algorithm. Thus, the algorithm detects at most m − (n − 1) cycles, because it can only
detect one cycle per edge. Moreover, for every vertex that it visits, at least one incident edge connects it to
the origin for the first time and does not generate a cycle.

The number of simple cycles that o belongs to can be larger. o can have as many as n − 1 neighbors,
and thus a maximum of (n − 1)(n − 2) incident cycles. Such an example would be a triangle fan as the
one illustrated in Figure 5, that contains two simple cycles for every unordered pair of neighbors of o. If
the graph is complete, then the BFCD may construct all of these cycles, otherwise the number of resulting
cycles will be lower than the total number of existing cycles.

Figure 5: A triangle fan where o belongs to (n − 1)(n − 2) simple cycles

The co-cyclic graph can be completed using the transitivity of the co-cyclic relation. Let us denote by Bo

the partial co-cyclic graph built by BFCD. We will prove that the closure of Bo by transitivity is identical
to Ho. For this, we need to prove that the connected components of Bo are the same as for Ho. This
is equivalent to proving that for every two co-cyclic vertices that are neighbors of o, a path can be found
connecting them in Bo.

Definition 2.5. A path u0 u1 . . . uk is called a predecessor path if pred(ui) = ui−1, ∀i, 1 ≤ i ≤ k. Such a
path is defined by the predecessor function.

We can remark that if two predecessor path intersect, then they must have a common beginning path. As
soon as they diverge, they cannon intersect again since the predecessor of a vertex is unique. The predecessors
build a spanning tree in the graph.

For any path P in the graph, let us denote by P̄ the path obtained by reversing P . If P = u0 u1 . . . uk,
then P̄ = uk uk−1 . . . u0.
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Lemma 2.6. Let u and v be two co-cyclic neighbors of o, and x and y two other vertices in the graph G
such that a simple cycle exists in the graph with the structure o u P1 x y P2 vo and the property that both the
paths o u P1 x and o v P̄2 y are predecessor paths. Then the cycle is detected by BFCD, and thus, the edge uv
exists in the graph Bo.

Figure 6 shows the cycle described in the lemma.

Figure 6: Cycle containing u and v in Lemma 2.6

Proof Since both the part of the cycle between o and x and the part between y and o are predecessor paths,
and the path is simple, we can say that

y 6= pred(x), x 6= pred(y)

This means that when the edge xy is processed, both vertices must have been visited before, otherwise
the one that was not visited yet would have the other one as predecessor. At this point, BFCD must have
constructed both predecessor paths to x and to y. So the edge xy is found to close a cycle.

We can remark that BFCD builds the cycles out of two predecessor paths and an extra edge. Thus, the
cycle built in this case based on the edge xy will be the one containing u and v. Since both of these are
neighbors of o, an edge will be added between them in the graph Bo. �

The next theorem insures the completeness of the graph Ho after the transitivity closure.

Theorem 2.7. For every two neighbors of o that are co-cyclic, a path connecting them exists in the graph
Bo constructed by BFCD.

Proof. Let us consider two neighbors of o, u and v, and a simple cycle connecting them in the graph G.
Let us exclude from this cycle the largest continuous predecessor paths going in the directions of u and v
respectively. We will use the strong induction over the remaining number of edges in this cycle to prove that
u and v are connected in Bo.

More precisely, let us decompose this cycle into o u P1 x P3 y P2 vo such that the paths from o to x and
from o to y are predecessor paths, but x P3 y is not. The maximality of the two predecessor paths means
that x is not the predecessor of the first vertex in P3, and y is not the predecessor of the last one.

Base case. If the length of P3 is 0, then there is an edge between x and y, and the vertices u and v satisfy
the condition in Lemma 2.6. Since in this case, an edge will exist between them in Bo, they are indeed
connected.

Inductive step. Let us suppose that any two vertices for which the length of P3 ≤ k are connected in Bo.
We shall prove that they are connected for the length of P3 = k + 1.

Let us denote by z the first vertex in the path P3. This means that there is an edge in G between x and
z, and since the cycle is simple,

z 6= pred(x), x 6= pred(z).

In such a case, a predecessor path must exist from o to z. Let w be the first vertex after o in that path,
and let us denote this path by o w P4 z. Figure 7 shows the structure of the vertices and paths involved in
this part of the proof.
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Figure 7: Cycle containing u and v and intermediate vertex w

If u = w, then by replacing the part o u P1 x z in the cycle with this predecessor path, we have found a
simple cycle containing u and v. In this cycle, the predecessor path from o to u expands up to the vertex z,
such that the length of the remaining path in the cycle is at most k and could be even smaller than k. The
inductive hypothesis tells us that in this case u and v are connected in the graph Bo.

If w = v, then the cycle ow P4 z xP̄1 u o satisfies the property in Lemma 2.7, thus w and v are connected.
If u 6= w and w 6= v, then the vertices u and w satisfy the condition in Lemma 2.6, so the edge uw exists

in Bo.
Furthermore, the vertices w and v are connected by the cycle owP4 zP3yP2 vo. Based on the observation

that predecessor paths cannot intersect if the start towards different neighbors of o, this cycle is also simple.
The largest predecessor path from o to w continues at least up to the neighbor z. Thus, the length of the
remaining path is at most k, and the inductive hypothesis tells us that the vertices w and v are connected
by a path in Bo.

In this last case, since the edge uw is in Bo and w and v are connected in Bo, there exists a path
connecting u and v in Bo. This concludes our proof. �

The next theorem gives us a important property of the graph Bo constructed by BFCD and justifies the
fact that in many cases, constructing the complete graph Ho by transitivity is not necessary.

Theorem 2.8. For every neighbor of o that is co-cyclic with o, at least one cycle of minimal length containing
it will be constructed by BFCD.

Proof. Let us consider a vertex u that is a neighbor of o and co-cyclic with it. In particular, BFCD will
find that pred(u) = o. Let us consider the shortest simple cycle containing both of these vertices. Let this
cycle be o u u1 u2 . . . uk o having a length of k + 2, where k > 0 to avoid a trivial cycle. Since uk is also a
neighbor of o, we must have pred(uk) = o.

For every i ≤ ⌊k/2⌋, d(o, ui) = i + 1 because if there existed any path from o to ui that was shorter than
the one going through u, we could replace the part of the cycle from ui back to o with this path to obtain a
shorter cycle containing o and u. This contradicts the minimality of the cycle.

As a second observation, u must be found on the predecessor path from o to each ui, for i < k/2. If
not, then we could also replace the part of the cycle from ui back to o with the predecessor path to obtain
a smaller cycle.

We must distinguish the cases where the cycle has an odd or an even length. Figure 8 shows the
composition of the cycle in the two cases that we discuss further in the proof.

a. Let us consider that k = 2j + 1 first. If the path o u u1 . . . uj is not identical to the predecessor path
from o to uj , we can replace the intermediate vertices with this alternative path, since we know that u must
also belong to it. Thus, if we identify u = u0, we can safely assume that

pred(ui) = ui−1, ∀i, 1 ≤ i ≤ j (7)
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Figure 8: Minimal cycle containing o and u with an odd (a) and an even (b) number of vertices

A similar reasoning can be applied to make sure that the path on the other side of the cycle is also a
predecessor path, such that

pred(ui) = ui+1, ∀i, j < i < k (8)

In this case the vertices u and uk satisfy the property in Lemma 2.6. Thus, the edge uuk must exist in
the graph Bo, and the weight of this edge being defined by this cycle, it must be minimal.

b. In the case where k = 2j, by the same procedure as above, we can choose the vertices u1, u2, . . . , uj−1

such that this is a predecessor path:

pred(ui) = ui−1, ∀i, 1 ≤ i < j (9)

Similarly, we can make sure that the path on the other side of a cycle is also a predecessor path:

pred(ui) = ui+1, ∀i, j < i < k (10)

As for the vertex uj itself, it is at equal distance from o on the path going through u and on the one
going through uk.

If pred(uj) = uj−1, then the cycle will be detected by BFCD at the moment where the edge uj uj+1 is
processed.

If pred(uj) 6= uj−1, then we can choose the vertices uj+1 to uk such that Equation 10 is still true, and
also pred(uj) = uj+1. In this case, BFCD will detect the cycle at the moment where the edge uj−1 uj is
processed.

In both cases the vertices u and uk satisfy again the condition in Lemma 2.6, and so the edge uuk will
exist in the graph Bo. The way we have chosen the vertices to follow the predecessor paths insures that
BFCD will construct this cycle after it detects it. �

Theorem 2.8 insures that no vertex will be missing from the graph Bo built by BFCD, and that at least
one incident edge is present for every such vertex. Theorem 2.7 insures that every vertex in Bo is connected
by a path to every vertex that it should be connected to.

2.3 Cycle Structure

Starting from the assumption that we have constructed the co-cyclic graph Ho successfully, let us examine
what the cycle structure in the vertex o entails in terms of the co-cyclic graph. For this step, each connected
component of the graph will be treated separately. Let us consider for now that the graph Ho has a single
complete connected component. There are two possible constraints to the solution defining the facet structure
around o. The first one involves not using an edge more than twice. The second one involves using each
outgoing edge from o and minimizing the total length of the considered cycles.
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Definition 2.9. A circuit solution for the facet problem is one where each outgoing edge from o is present
in exactly two cycles in the structure and for which the total length of the cycles is minimal.

The constraint that each outgoing edge should appear twice means that the subset of cycles constitutes
a Hamiltonian circuit in the graph Ho, a simple cycle containing all the vertices. The constraint about
minimizing the total length of the cycles translates in terms of the graph Ho as a Hamiltonian circuit
minimizing the total cost. This means that the problem can be reduced to a symmetric instance of the
Traveling Salesman Problem (TSP) in the co-cyclic graph.

TSP is NP-complete, but we have not shown a complete equivalence to this problem. An instance of our
problem can be reduced to an instance of TSP, but the reverse is not true. In fact we can observe that the
co-cyclic graph satisfies the triangular inequality. More precisely, if v, w, y ∈ Vo, then based on the proof of
Theorem 2.4 concerning the transitivity of the co-cyclic property, the weight of the edges vw,wy and vy in
the co-cyclic graph satisfy the inequality

Wo(vy) ≤ Wo(vw) + Wo(wy) − 2 (11)

There are many studies of TSP in the case where the graph has particular properties [11], especially
Euclidean [2]. The major algorithm for the case where the triangle inequality is satisfied was introduced by
Christofides in [4]. He proved that there exists a polynomial algorithm that produces a solution not worse
than twice the optimal cost. His algorithm uses the idea of the minimum spanning tree.

For example, for the hypercube with co-cyclic graph presented in Figure 4, a circuit solution could be the
one shown as a thick gray outline in Figure 9 left. The corresponding sequence of cycles in the original graph
is shown in the same figure to the right. We show the 3D object in this figure using a different perspective
that makes it easier to see the solution.

Figure 9: A circuit solution in the hypercube

Definition 2.10. A spanning tree solution for the facet problem requires each outgoing edge to be present
at least once and for the total length of the cycles to be minimal.

The relaxation of the constraints of the circuit solution means that the object satisfying these properties
in the graph Ho is a minimum spanning tree [17].

For example, for the hypercube and the co-cyclic graph presented in Figure 4, a spanning tree solution
could be the one shown in gray in Figure 10 left; the corresponding sequence of cycles in the original graph
is shown in the same figure to the right.
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Figure 10: A spanning tree solution in the hypercube

3 Facet Definition and Detection

In this section we present the facet detection algorithm, starting with the existence and detection of simple
cycles in the graph, followed by a selection and classification of the simple cycles intersecting in a particular
vertex in the graph.

The definition of a facet is closely related to that of a feature. Basically a feature is usually composed of
several facets, so facet detection can be seen as an intermediary step in feature detection.

Definition 3.1. A feature is part of an object that is localized, meaningful, and detectable.

Its definition is often subjective, making reference to what a human eye can recognize [12]. Examples
include edges, corners, chains, line segments, parameterized curves, regions, surface patches (3D), closed
polygons [8].

Definition 3.2. A facet is usually defined as part of an object or of an image that is flat, planar, linear,
quadratic, or cubic.

Considering that a graph represents objects with straight edges and planar surfaces, a facet is a closed
and planar polygon, preferably convex.

3.1 Facet Detection

Instead of focusing locally on each of the facets, our algorithm detects them by using the entire structure of
cycles surrounding each vertex in the graph. Starting from the assumption that the graph represents a solid
surface without holes, we aim to construct a fan of minimal polygons centered in each vertex such that they
can have a local planar representation without overlapping. For this purpose, every vertex in the graph that
is adjacent to the origin, must belong to two and only two cycles of the fan.

The algorithm Co-Cyclic Facet Detection (CCFD) shown bellow starts by detecting all the simple cycles
intersecting in o, then sorting them by length. After that it follows the idea of a minimum spanning tree,
adapted to construct a Hamiltonian circuit.
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Algorithm CCFD

for every vertex o in the graph {

Bo = BFCD(o); // set of simple cycles

optional: Ho = closure of Bo by transitivity;

sort Bo or Ho by cost;

Fo = empty_set();

for (every cycle c in Bo and Ho and

while size(Fo) < degree(o)) {

v, w = the two vertices in c

adjacent to o;

if ((each of v and w appear each in

at most one other cycle in Fo)

and ((c does not close a cycle of cyles in Fo)

or c is the last cycle we need))

add c to Fo;

}

}

Complexity

If n is the number of vertices and m the number of edges, then in the worst case BFCD will have a
complexity of m = O(n2). The operation of merging two cycles and eliminating sub-cycles is linear over
n. Computing the closure of the co-cyclic graph can be done with a greedy algorithm of complexity in the
worst case O(n(n(n − 1)/2 − m)2) = O(n5). By computing only the cycles necessary to close the circuit at
the end of the algorithm, we can reduce this step to n3. This can be done by a simple search of a path in
the co-cyclic graph. Sorting the cycles by length is of a complexity of the order O(m log m) = O(n2 log n).

We should recall here that Theorem 2.8 indicates that a cycle of minimal length will be found by BFCD
for every neighbor of o. This means that an edge of minimal weight will be present for every vertex even
without the closure of the graph Bo. These edges belong to the beginning of the set of edges in Ho as sorted
by weight. Thus, in most cases the algorithm is likely to complete a Hamiltonian circuit of minimal cost
without the need to complete the co-cyclic graph after the run of BFCD.

The most costly operation in the algorithm above is checking that the cycle c does not close a cycle of
cycles. This can be done efficiently by storing the neighbors of the vertex o in a union/find data structure, in
which case its complexity will be O(log n) at each step, making the total complexity O(m log n) = O(n2 log n).

In conclusion, our algorithm has a complexity of O(n2 log n) without closure of the co-cyclic graph, and
of O(n3) with it.

3.2 Examples

We present here some examples of results of our algorithm for a variety of graph configurations. In each of
the following figures the origin vertex is shown in green, while the cycles in the structure identified by the
algorithm are shown in shades of red. This provides a visually distinction between the cycles composing the
structure.

First, Figure 11 shows the hypercube configuration that we discussed earlier in this paper. We can see in
the left image that the algorithm found the predicted cycle structure for the vertex we analyzed before. It
also found an equivalent correct solution for a vertex on the exterior cube, shown in the image to the right.

Figure 12 shows the cycle structure for a regular dense fan (left), and for one of the vertices on the border
of the fan (right) in an ellipsoid graph. Figure 13 shows the solution found by our algorithm on a triangular
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Figure 11: Solutions found by the algorithm in a hypercube

grid both for a vertex on the outer border of the grid (left) and for a vertex inside the grid (right). Figure
14 shows the structure for vertices that are part of the regular grid of a torus graph (left) and an ellipsoid
(right), both composed of regular quadrilateral grids. For all these graphs the algorithm was able to identify
the cycle structure precisely.

Figure 12: A dense fan on an ellipsoid graph

Figure 13: A vertex on the border of a grid and inside a grid

An important question related to the structure of the graph is the planarity of the graph. Figures 15 and
16 show the local structure built by the algorithm for the known non planar graphs K5 and K3,3.
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Figure 14: A vertex on regular grid in a torus graph and in an ellipsoid

Figure 15: The vertex structure for K5, two layouts

Figure 16: The vertex structure for K3,3 for two vertices

In the case of K5 we show the graph in a planar representation (left), and in a three dimensional
representation (right) that emphasizes the solution better. Both images show the same solution, composed
of the cycles ABCA, ACDA, ADEA, AEBA, forming a Hamiltonian circuit in the co-cyclic graph of A.

In the case of the graph K3,3, we used a geometric representation minimizing the number of edge crossings.
We show two solutions, one on the outside of the graph (left) and one in the center of the graph (right).
They look different, but they are mathematically equivalent. In both cases the solution consists of two
cycles of length four: CEAFC, CEADC on the left, and ECDAE, EBDAE on the right. In these cases
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the co-cyclic graph built by BFCD was incomplete, and the circuit solution after the transitivity completion
would contain the cycles CFBDC and ECFBC respectively.

There is a difference between finding the mathematical object in the definition of the circuit solution
presented in Section 2.3 and the intuitive ideas of facet and feature introduced in the current section. In
most cases, CCFD builds a cycle structure that is appropriate for what we perceive as the structure of the
object, but fine-tuning of the heuristic can sometimes lead to better results.

In particular, the closure of the co-cyclic graph based on the transitivity of the co-cyclic relation can
have both positive and negative impact on the solution. For example, in the case of the vertex on the border
of the grid in Figure 13 left, the BFCD algorithm failed to capture all the simple cycles around the origin
vertex (hollow circle in the figure). As a result, the circuit of cycles was not completed. It is a Hamiltonian
path and not a circuit. For this particular case, this emphasizes the structure better than a circuit because
the vertex is on a border and has a topologically closed neighborhood.

For more complex local structures in the graph, not closing the co-cyclic graph Bo can lead to incomplete
solutions. Such an example is shown in Figure 17.

Figure 17: An incomplete solution without closure of the co-cycle graph

Last, we have shown in Section 2 that the problem can be expressed as an instance of the Traveling
Salesman in the co-cyclic graph. TSP is NP-complete, and even in the case where the graph satisfies the
triangle inequality, as in our case, the best polynomial algorithm cannot guarantee an optimal solution, but
only one that is no more than a given percentage more costly than the optimal one. Figure 18 shows an
example where the solution found by the algorithm is not optimal.

Figure 18: A non-optimal solution on a torus graph
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3.3 Applications

We have originally designed this algorithm for a practical application related to graph drawing [16] and
some recent results were presented in [15]. The problem we are trying to solve is building a graph layout
or graph drawing [10] that is consistent with the weights in the graph, and if possible, that presents some
geometric properties like maximizing the surface. We utilize a combination of force-based algorithms and
genetic algorithms to solve this problem. For this purpose we have used the CCFD algorithm to provide a
better estimation for some of the measures for the geometric properties of the graph layout.

Surface estimation. The local structure of the graph in each vertex identifies the facets of the graph and
reduces the problem of computing the surface of the graph to the sum of the area of all the cycles extracted
by CCFD. Each of them is then a simple polygon whose surface is easy to compute. A simple rule can avoid
adding the surface of a cycle more than once, which consist of only considering the cycle for the vertex with
the smallest index in the cycle. The use of CCFD has improved the layouts obtained by using this measure.
Figure 19 compares two graph layouts obtained first using an estimation of the surface without CCFD (left)
and by using CCFD as a preliminary step in the estimation of the graph surface (right).

Figure 19: Layout obtained with a surface measure without CCFD (left) and with CCFD (right) for a regular
4x4 grid

Angle uniformity. A second measure of the aesthetic quality of the graph layout is related to the uni-
formity of the angles. As the graph might be composed of a variety of cycles with different lengths, the
local structure of cycles constructed by CCFD provides a way to identify which angles are significant around
every vertex of the graph and what their ideal value should be. Thus, this measure provides an optimal
value when the angles in each of the basic cycles built by CCFD are equal to the angle of a regular polygon
with a number of vertices equal to the length of the cycle. Figure 20 compares two graph layouts obtained
first using an estimation of the angle uniformity without CCFD (left) and by using CCFD to determine the
significant polygons for the angle uniformity (right).

Both Figure 19 and Figure 20 show that considerable progress can be made towards drawing an appro-
priate layout by using CCFD to determine the local structure of the graph first.

4 Conclusion

In this paper we presented an algorithm to detect facets in a graph and emphasize the local structure of the
graph around a particular vertex for the purpose of visualization.

Section 2 presented a cycle detection algorithm BFCD and introduced the notion of induced co-cyclic
graph. We showed that our problem can be reduced to an instance of the Traveling Salesman in the co-cyclic
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Figure 20: Layout obtained with an angle uniformity measure without CCFD (left) and with CCFD (right)
for a regular 4x4 grid

graph. We have also analyzed some important properties of the cycle-detection algorithm that make it
complete.

Section 3 introduced the facet detection algorithm inspired from the method constructing the minimum
spanning tree and discussed its complexity. We have shown several examples of solutions found by the
algorithm and further discussed its current applications to a graph drawing problem.

Our method detected the correct solution for most of the graphs that we examined and is of polynomial
complexity. It is the most efficient when the graph is a representation of a regular mesh extracted from the
surface of an object.
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