
1

Applying Domain Knowledge to the Recognition of

Handwritten ZIP Codes

Ibrahim Y. Chaaban
Indiana University at South Bend

ABSTRACT

We present a simple system that exploits
domain knowledge to improve the
segmentation and recognition of
handwritten ZIP codes. Specifically, we
show that the concept of metaclasses of
digits, introduced by Morita et al. [16] for
recognition of Brazilian bank check dates,
can be extended to ZIP code recognition.
We also show that, when this domain
knowledge is present, integrated
segmentation and recognition is not
required for the recognition of handwritten
ZIP codes, as claimed by Liu et al. [4].

INTRODUCTION

Machine recognition of handwritten digits
is very challenging. The difficulties and
complexity of this task lie in the fact that a
system must be able to recognize
handwritten digits produced by different
people, using different instruments. A
system has to deal with widely different
sizes and slants, as well as different shapes
and widths of the strokes, for example.
Accordingly, many approaches and
methods have been proposed for pre-
processing, feature extraction,
classification and/or learning of
handwritten digit images.

Handwritten digit recognition
research concentrates on either individual
digits or digit strings. With respect to
recognition of individual handwritten
digits, machine vision has achieved an
accuracy of 99.6% [17]. By comparison,
humans recognize 97.63% of individual
handwritten digits [10]. Many domains
require recognition of digit strings, as

opposed to individual digits however.
Some examples are automated sorting of
mail by postal code [7], automated reading
of checks [15] and tax returns, and data
entry for hand-held computers. In these
domains, handwritten digits rarely appear
isolated. Instead they appear as part of a
string of digits where some digits may
touch and/or overlap. In many of these real
world applications, the images are
processed by human operators. However,
automation may improve production and
cut costs. For this to happen, performance
of an automated system should compare
favorably to human performance. Such
comparison is also an essential component
in determining whether the problem has
been solved or not.

In the domain of bank check
processing, Morita and colleagues [16]
developed a system that uses the Hidden
Markov Model (HMM) and the Multilayer
Perceptron (MLP) to segment and
recognize unconstrained handwritten dates
on Brazilian bank checks. The system
processes the three subfields that make up
the date (day, month, and year). In order to
reduce the date lexicon size, Morita and
colleagues used domain knowledge, which
enabled them to reduce the complexity of
the recognition process. This was possible
because the lexicons for day and year are
known. For example, in a two digit day the
first digit can only be 0, 1, 2, or 3, while
the second digit can range from 0 to 9. A
similar approach was applied to two/four
digit years. They restricted checks to just
those written after 1990 and before 2029.
In a two digit year the first digit can then
be 0, 1, 2, or 9. The second digit can range
from 0 to 9. In a four digit year, the first
digit can only be 1 or 2; similarly the

2

second digit can only be 0 or 9. They used
five MLP neural networks, each using one
hidden layer, to classify the five different
metaclasses of digits. For example, one
MLP network classified the digits in the
metaclass consisting of 0, 1, 2 and 3. It had
one hidden layer with 70 hidden units.
Another network classified the digits 0
through 9 using one hidden layer with 80
hidden units, and so forth. The hidden
layer in each network contained an
empirically determined number of hidden
units, each of which connected to all input
and output units. The performance of this
system on four digit years was 100%. On
two digit days performance was 93.2%,
and on two digit years performance was
97.2%. The discrepancy between
performance on two digit years and two
digit days can also be explained by their
use of domain knowledge. Specifically,
they exploited the fact that year a lways
appears at the end of a date. They used this
knowledge to improve segmentation of the
year from the rest of the date, and the
improved segmentation led to improved
recognition.

ZIP code recognition is another
very interesting problem, due to the
benefits of having an accurate automated
system that can sort letters at a high rate.
On average a postal worker can sort about
800 letters an hour. On the other hand, an
automated sorting machine, reading
printed ZIP codes with an optical scanner
is estimated to process about 37 times
more than the postal worker at a fraction
of the cost [13]. Such performance would
also be desirable for handwritten ZIP
codes. Liu and colleagues [4] compared
different classifiers and learning methods
in the recognition of handwritten ZIP
codes. The classifiers compared were
single-layer perceptron (SLP), multi-layer
perceptron (MLP), radial basis function
classifier (RBF), polynomial classifier
(PC), learning vector quantization (LVQ),
modified quadratic discriminant function
(MQDF), and learning quadratic
discriminant function (LQDF). Each

classifier had two or three variations
depending on the learning method, such as
maximum likelihood estimation (MLE),
discriminative learning (DL), or enhanced
discriminative learning (EDL). The
method of maximum likelihood is a
general method of estimating parameters
of a population by values that maximize
the likelihood of a sample [5]. The
discriminative learning method on the
other hand, updates parameters iteratively
to separate the patterns of different classes.
The enhanced version of discriminative
learning is equivalent to DL, except that in
EDL the training is done with outliers [4].
The first classifier they tested was the
SLP. A single layer perceptron has an
input and output layer. Each neuron in the
output layer of their network was
connected to each input neuron. When
trained with the EDL method and forced to
make a decision without rejection, this
network’s correct recognition rate was
74.31%. This is probably because this
typ e of network is limited to only a single
layer. They also tested a MLP network.
With one or two hidden layers, this
network can approximate virtually any
input-output map, by learning to transform
input data into a desired response. The
MLP’s correct recognition was 89.22%
without rejection using the same learning
method. When using the EDL method,
both the RBF and PC produced similar
results to that of the MLP. The RBF
correct rate without rejection was 87.84%,
and the PC had a correct rate of 89.91%
without rejection. The LVQ classifier was
also tested. LVQ is a competitive learning
algorithm, described sometimes as the
supervised version of Kohonen’s Self-
Organizing Map [19]. Percent correct for
the LVQ classifier was 87.61% with no
rejections. The MQDF classifier, described
by Liu et al. [4] as the MLE version of
LQDF, was also tested, and it had a correct
rate of 87.61% without rejection. Finally,
the LQDF classifier was tested to reveal a
90.37% correct rate without rejection.

3

In order to test these classification
methods, Liu and colleagues [4] developed
a new model. First, the model pre-
processed the string image to prepare it for
pre-segmentation. In the pre -segmentation
stage, connected component labeling was
applied. To handle the cases of touching
digits, the model analyzed the upper and
lower profile curves of any touching digits
in order to generate a candidate cut.
Heuristic rules were also applied to ensure
that the candidate cut would not split a
single digit. Their pre-segmentation stage
was followed by an integrated
segmentation and recognition (ISR) stage.
In this stage Liu et al. [4] combined
dynamic programming (DP) search and
digit recognition. Each of the character
classifiers described earlier was used to
assign class scores to the candidate
patterns generated in the pre-segmentation
stage. The optimal pattern was then found
by DP search based on class scores given
by the classifiers. According to Liu and
colleagues [4], the digits in a ZIP code
cannot be reliably segmented in a distinct
stage prior to recognition. They claimed
that the handwritten ZIP code problem
cannot be solved without integrated
segmentation and recognition. Integrated
segmentation and recognition was used by
many researchers in different areas (e.g.
Xin and colleagues [20] used ISR to
recognize characters on license plates; Liu
et al. [6] also showed how ISR can be used
in the recognition of numeral strings). The
recognition portion of this integrated
segmentation and recognition stage tested
the different types of classification
methods described above. The LQDF
classifier, as noted, had the best
performance. The system was tested on
436 5-digit ZIP code images from CEDAR
CDROM-1 [1]. The ZIP code images were
obtained by USPS from actual mail
images. Liu and colleagues [4] reported a
correct recognition rate of 90.37%, which
appears to be the best performance to date
in machine recognition of handwritten ZIP

codes. By comparison, humans recognize
98.39% of handwritten ZIP codes [11].

Unlike the Brazilian bank check
date recognition system of Morita et al.
[16], domain knowledge was not used in
the U.S. ZIP code recognition system of
Liu et al [4]. Might the metaclasses
technique of Morita et al. [16] generalize
from the case of Brazilian bank check
dates to the case of U.S. ZIP codes?
Furthermore, if such a domain knowledge
technique were applied to automated ZIP
code recognition, would integrated
segmentation and recognition be required,
as claimed by Liu et al. [4], or might a
distinct segmentation stage followed by a
distinct recognition stage work just as
well? Our work addresses both questions.

MODEL

 A key feature of our model is that it
incorporates domain knowledge. The
structure of ZIP codes and the state of
destination can be exploited to make the
segmentation and recognition processes
more accurate. Understanding the structure
of ZIP codes can significantly reduce the
range of possible classes to consider
during the recognition process, thereby
increasing accuracy. For example, in a five
digit ZIP code, the first digit indicates one
of ten large geographic areas in the
country. It represents a certain group of
U.S. states, ranging from zero in the
Northeast to nine in the far West. The
second and third digits indicate
metropolitan areas and sectional centers.
The fourth and fifth digits represent more
specific areas such as local post offices or
postal zones in larger cities [22].
Combining this knowledge with the state
of destination radically reduces the number
of ZIP codes to consider during
recognition.
 Our model consists of two stages: a
segmentation stage and a recognition
stage. The segmentation stage exploits the
fact that a ZIP code is composed of 5

4

digits1. Utilizing the destination state, the
recognition stage tries to recognize the
five segments derived from the
segmentation stage, as shown in Figure 1.

Figure 1. The two stages (segmentation &
recognition) of our model.

Before describing our model and

its performance, we make explicit certain
assumptions, as well as our predictions.
With respect to domain knowledge, as
mentioned above, our model assumes five-
digit ZIP codes. Also knowledge of the
structure of ZIP codes (as briefly described
above) is built into the model. Further, our
model assumes perfect knowledge of the
state of destination as an input. This latter
assumption requires some justification.
First, in the real world, destination state
would come just before ZIP code.
(Alternatively, it may appear on the line
just above the ZIP code line.) Given that
English is normally read from left to right
and from top to bottom, it is reasonable to
assume that humans would have
knowledge of destination state when trying
to read a ZIP code. We want to be able to
compare our model’s performance to
human performance. Therefore, in order to
make this comparison fair, destination
state is input to our model for each ZIP
code to be recognized. Second, the main

1 We focused on five-digit ZIP codes vs. nine -digit
ZIP codes for the following reasons: (1) Nine-digit
ZIP codes are optional. (2) The testing data found
on the standard CEDAR CDROM-1 did not have
enough nine-digit ZIP codes for testing. (3) Liu and
colleagues [4] used five-digit ZIP codes in testing
their system, and so did we to allow for seamless
comparison with their work.

purpose of this study is to address the two
questions described in the introduction.
Will the metaclasses technique of Morita
et al. [16] generalize beyond Brazilian
bank check dates to U.S ZIP codes? Does
machine recognition of handwritten ZIP
codes require an integrated segmentation
and recognition stage, as claimed by Liu et
al. [4], when domain knowledge is
present? To decisively answer each
question, knowledge of correct destination
state for each ZIP code must be assumed
by the model2.

Segmentation

One challenge of classifying
handwritten ZIP codes is the fact that in
real applications the image extracted from
a piece of mail will not necessarily appear
as five separated digits. This is due to
imperfect handwriting, as shown in Figure
2.

Figure 2. Sample patterns from the
CEDAR CDROM-1 database.

In addition, extra noise (such as bar codes,
stamps and other markings made by the
post office) is added to the image during
processing. Further, moisture and handling
may smear or smudge the handwriting on
an envelope. To overcome these
challenges and to achieve segmentation, a

2 While our goal was not to develop our model for
real -world deployment, it could easily be modified
for this purpose by taking into account a relaxation
of the assumption of correct destination state for a
given ZIP code.

5

ZIP code pattern goes through three phases
in our model (see Figure 1).

In the first phase, the ZIP code
pattern is prepared for division into five
separate patterns, each representing a digit
in the ZIP code. First the pattern is
converted into a binary image. This allows
for easy processing of patterns. Then, from
the pattern a median filter removes any set
of connected pixels with an area-size less
than an empirically determined threshold
(3×3). This step is necessary because it
helps to remove some of the added noise
discussed earlier. Next, the image closing
algorithm is applied to the pattern to
perform morphological “closing” on the
binary digits found in the image (see
Figure 3) [2]. This step will enhance the
shape of each digit and therefore allow for
better classification later in the process
[18].

Figure 3. Sample patterns extracted from
ZIP codes found on the CEDAR CDROM-
1 database. The patterns show how some
digits are incomplete because of gaps.

 The second phase of segmentation
finds all connected components in a given
ZIP code pattern. A connected component
is a set of pixels sharing some feature
(blackness of the pixel) where each pixel
in the set neighbors at least one other pixel
in the set. The purpose of this step is to
isolate the digits which make up the ZIP
code pattern. The connected components
algorithm checks four neighboring pixels
to determine connectivity to other pixels
[14].

Because a ZIP code is composed of
5 digits, the second phase can have three
possible outcomes. The first outcome
would be to get five connected
components with a relatively similar size.
This would imply that the pattern was
successfully segmented into five digits.
The second outcome would be to get less

than five connected components. This
could mean that two or more digits in the
ZIP code are touching or overlapping. If
so, they must be separated. The third
outcome would be to get more than five
connected components. This particular
outcome would suggest that there may be
one or more individual digits that are
broken into multiple pieces which
therefore must be joined together.

The third phase of segmentation
involves separating connected digits (if
necessary) or joining multiple segments of
a digit (if necessary) found in a ZIP code.
Separating touching digits. When two or
more digits are touching or overlapping,
separating them is particularly challenging.
An improper separation of these digits
tends to leave some of the newly separated
digits with noise or parts of the touching
digit(s). In the separation process a digit
might lose a piece of a stroke to a
neighboring digit, or a digit might lose a
chunk because of overlapping. These
problems arise because finding the precise
splitting path that separates touching digits
is nontrivial (see Figure 4).

Figure 4. A sample of ZIP codes from
CEDAR CDROM-1. The samples show
that finding the precise splitting path is
nontrivial.

 To split touching digits our
algorithm starts by finding the bounding

6

box of the entire ZIP code in a given
pattern. Then the algorithm divides the
area of the bounding box vertically into
five relatively equal segments. This
algorithm tends to leave segments with
noise or parts of the neighboring digit(s).
In order to filter out the noise found in
each of the five segments, the largest
component is located in each segment and
everything else (noise or parts of
neighboring digits) is discarded. The
result of this algorithm is five relatively
noise-free segments each representing a
single isolated digit ready to be converted
into a feature vector. The process of
converting a ZIP code pattern into a vector
is described in the Feature Extraction
section.
Joining segments of a digit. Joining
segments that belong to one digit is as
challenging as separating touching digits.
The challenges here are to determine
which segment belongs to which digit and
whether a segment is part of a digit or
simply noise. Furthermore, using the
improper joining algorithm may leave
some of the digits with artifacts or noise.
These problems arise because finding the
precise technique to join segments is
nontrivial. A digit may occur in pieces as a
result of three things: not having the
proper writing tool (dry pen), noise or
extra markings added during processing,
or the writer did not properly connect the
digit. By analyzing various cases of broken
digits, we found that the digit which often
occurs in two segments is the digit 5. With
the exception of the digit 4, the digit 5 is
the only digit which often is written in two
parts (see Figure 5). Therefore, the digit 5
is perhaps more likely to appear in two
parts than any of the other digits.

Figure 5. Sample patterns extracted from
ZIP codes found on the CEDAR CDROM-
1 database. The patterns show how the
digit 5 is sometimes presented in two
segments.

To solve this problem we used the
single line test algorithm. This algorithm is
commonly used in mathematics [12]. It
tests columns of pixels one at a time as it
moves across the entire ZIP code starting
from the left -hand-side. If the column
being tested intersects the area of two of
the connected components found earlier,
then those two components are joined. In
case of a failure to find two components to
connect, the ZIP code is simply divided
into five equal segments as described in
the previous section on separating
touching digits.

Feature Extraction

 Since different individuals can
have various writing styles, the features
extracted from each digit must be
independent of size, width of the strokes,
and other elements of the writing styles of
the individuals. To attain such a feature
vector a matrix of pixels is first sampled
from each digit pattern, as shown in Figure
6.

Figure 6. Normalizing the segmented
digits by sampling.

7

Determining the proper sample size means
extracting meaningful features using the
smallest sample size possible. Careful
evaluation of the size, width of the strokes,
and the shapes of the training patterns
indicated that a sample size of 208 pixels
(13 × 16) would provide good
representation of the patterns3. Then, the
matrix is reduced to a vector by projecting
it onto the X-axis, as shown in Figure 7.

Figure 7. Converting the 13 × 16 matrix
into a vector by projecting onto the X-axis.

The resulting feature vector contains
values that represent the number of black
pixels found in each column of the matrix.
A similar technique was used by Rababaah
[9] to reduce the size of asphalt pavement
crack patterns. To illustrate the uniqueness
of these vectors we created two graphs.
These graphs show that despite the
resemblance in shape between the digit 0

3 For some small extracted digits, the 13 × 16

sample size presented a problem. Because the

sample size was greater than the size of the digit

pattern in these cases, there were not enough pixels

in the pattern from which to sample. To solve this

problem we used all the pixels in the pattern and

completed the rest of the vector with zeros.

and 8, their vectors are clearly unique, see
Figure 8.

Figure 8. The top graph shows the
average of 10 vectors each representing
the ‘0’ pattern. The bottom graph shows
the average of 10 vectors each
representing the ‘8’ pattern.

Recognition

 The task of the recognition stage is
to recognize the string of individually
segmented digits. Utilizing the destination
state, the recognition stage tries to
recognize each digit starting with the left-
most digit, as shown in Figure 9.

Figure 9. The knowledge-based
recognition model starts with five
unknown segmented digits. The model
will first attempt to classify the left -most
digit. If unsuccessful the ZIP code is

8

rejected, otherwise it will go on to classify
the second digit. If the second digit is
classified correctly the model will classify
the remaining three digits, otherwise it
will stop. (Indiana is the state assumed in
this example.)

Because destination state determines the
first two digits of a ZIP code, the system
will make a decision for each of the first
two digits on whether it is feasible to
continue or not. Specifically, the
metaclasses technique of Morita et al. [16]
will be applied to each of the first two ZIP
code digits. For example, if the destination
state is Indiana, then the first digit must be
a 4, because all ZIP codes in the state of
Indiana start with the digit 4. Thus, the
metaclass for the first digit of an Indiana
ZIP code is {4}. Before going any further,
the model must verify that the first digit is
a 4, as shown at the top of Figure 9. If it is
not, the model will stop and reject the ZIP
code. On the other hand, if the first digit is
a 4, then the model will proceed to classify
the next digit. In this example, the model
now must determine if the second digit is a
6 or 7, because in the state of Indiana these
are the only possible digits after the initial
‘4’. Thus, the metaclass for the second
digit of an Indiana ZIP code is {6, 7}. If
the model classifies the second digit as a 6
or 7, then it will classify the remaining
three digits. Otherwise it will stop and
reject the ZIP code, as shown in Figure 94.
Recall that Morita and colleagues [16]
used a similar strategy to classify
handwritten dates (days/years) using
domain knowledge. They were able to
reduce the complexity of the recognition
process by reducing the date lexicon size.
This was possible because they knew the
lexicons for day and year. For example, in
a two digit day the first digit can only be 0,
1, 2 or 3 while the second digit can range
from 0 to 9. A similar approach was

4 Here, in order to allow for seamless compar ison
to the results obtained by Liu et al. [4] rejection
does not actually stop the processing of a given ZIP
code. Instead the model passes the digits yet to be
classified to another network which classifies each
as one of the ten possible digits.

applied to two and four digit years. For
instance, in a two digit year, they only
allowed the first digit to be 0, 1, 2 or 9.
The second digit can range from 0 to 9. In
their model, they identified five different
metaclasses of digits: one metaclass for
digits {0, 1, 2, and 3}, one for digits {0, 1,
2, 9}, one for digits {1, 2}, one for digits
{0, 9}, and one for digits {0 through 9}.
We conjectured that the metaclass
approach employed by Morita et al. [16]
may also be useful in recognition of U.S.
ZIP codes. Obviously, the set of
metaclasses useful for handwritten ZIP
code recognition will be different than the
set of five metaclasses useful for
recognition of Brazilian bank check dates,
Morita et al. [16]. The necessary set of
metaclasses for handwritten ZIP code
recognition will now be described.

Classification Method

The recognition portion of this
model was implemented using multi-layer
perceptron (MLP) neural networks. Each
individual network classified a distinct
metaclass of digits. This was inspired by
the use of distinct MLP classifiers for
distinct metaclasses of digits in the study
of Morita et al. [16]. One of ten MLP
networks was used to classify the first digit
of a ZIP code, depending on the state.
Recall that in a five digit ZIP code the first
digit corresponds to one of ten large
geographic areas in the country. Therefore,
we used ten networks (ten distinct
metaclasses) to classify the first digit in a
ZIP code. One MLP network classified the
digits 6 and 7 (metaclass {6, 7}) for the
second digit for the state of Indiana.
Another classified the digits 0, 1, and 2
(metaclass {0, 1, 2}) for the second digit
for the state of Illinois, and so forth for
other states. This strategy required a total
of twenty-six different MLP networks.
Also, by exploiting the structure and range
of possible ZIP codes for each state, we
were able to create a list of possible
second digit(s) for each state, as shown in
Table 1.

9

States (ZIP code starts with 0) Possible Second digit States (ZIP code starts with 5) Possible Second digit

CT Connecticut 6 IA Iowa 0 - 1 - 2

M A Massachusetts 1 - 2 M N Minnesota 5 - 6

M E Maine 3 - 4 MT Montana 9

NH New Hampshire 3 ND North Dakota 8

NJ New Jersey 7 - 8 SD South Dakota 7

RI Rhode Island 2 WI Wisconsin 3 - 4

VT Vermont 5

 States (ZIP code starts with 6) Possible Second digit

States (ZIP code starts with 1) Possible Second digit IL Illinois 0 - 1 - 2

DE Delaware 9 KS Kansas 6 - 7

NY New York 0 - 1 - 2 - 3 - 4 M O Missouri 3 - 4 - 5

PA Pennsylvania 5 - 6 - 7 - 8 - 9 NE Nebraska 8 - 9

States (ZIP code starts with 2) Possible Second digit States (ZIP code starts with 7) Possible Second digit

DC District of Columbia 0 AR Arkansas 1 - 2

M D Maryland 0 - 1 LA Louisiana 0 - 1

NC North Carolina 7 - 8 OK Oklahoma 3 - 4

SC South Carolina 9 TX Texas 5 - 6 - 7 - 8 - 9

VA Virginia 0 - 2 - 3 - 4

WV West Virginia 4 - 5 - 6 States (ZIP code starts with 8) Possible Second digit

 AZ Arizona 5 - 6

States (ZIP code starts with 3) Possible Second digit CO Colorado 0 - 1

AL Alabama 5 - 6 ID Idaho 3

F L Florida 2 - 3 - 4 NM New Mexico 7 - 8

GA Georgia 0 - 1 NV Nevada 8 - 9

M S Mississippi 8 - 9 UT Utah 4

T N Tennessee 7 - 8 WY Wyoming 2 - 3

States (ZIP code starts with 4) Possible Second digit States (ZIP code starts with 9) Possible Second digit

IN Indiana 6 - 7 AK Alaska 9

KY Kentucky 0 - 1 - 2 CA California 0 - 1 - 2 - 3 - 4 - 5 - 6

M I Michigan 8 - 9 HI Hawaii 6

OH Ohio 3 - 4 - 5 OR Oregon 7

 WA Washington 8 – 9

Table 1. A grouping of states with same first ZIP code digit and all possible second digit(s) for each state [22].

10

This table shows how the second digit for
some states can correspond to a single
digit (e.g. Montana – 9), two digits (e.g.
Indiana – 6,7), three digits (e.g. Missouri –
3,4,5), four digits (e.g. Virginia – 0,2,3,4),
five digits (e.g. Texas – 5,6,7,8,9) or seven
digits (e.g. California – 0,1,2,3,4,5,6).
Since some of these states share similar
sets of possible second digit(s) - for
example both Kansas and Indiana have the
digits 6 and 7 as p ossible second digits –
we were able to eliminate redundancies
among metaclasses and compile a list of
metaclasses needed for this model, as
shown in Table 2.
After analyzing the testing data found on
CEDAR CDROM-1 [1] (the standard test
database), we found that the metaclass
needed to classify whether the second digit
in a California ZIP code is 0, 1, 2, 3, 4, 5
or 6 can be eliminated due to insufficient
testing data, as shown in Table 35.

ZIP First Digit

 0 1 2 3 4 5 6 7 8 9

0 5 0 7 10 7 1 9 10 5 0

1 1 7 8 0 1 0 0 1 0 0

2 8 0 8 2 2 7 1 11 7 0

3 6 7 0 0 13 7 11 8 6 0

4 0 5 0 1 0 1 0 3 6 0

5 6 0 4 7 1 7 1 0 6 8

6 5 15 1 2 11 0 13 0 1 10

7 5 1 2 10 0 3 0 12 6 11

8 1 0 5 0 12 6 12 0 2 7

S
ec

o
n

d
 D

ig
it

9 1 8 7 9 4 2 1 0 6 13

Table 3. We created a frequency matrix of
the test dataset found on CEDAR

5 The t esting data found on CEDAR CDROM-1 [1]
does not provide ZIP codes for California with 0, 1,
2, 3, or 4 as the second digit. Therefore the 26th
metaclass listed in Table 4 is not needed and can be
replaced with the one that classifies the digits 5 and
6 instead.

CDROM-1 [1], according to the first and
second digits. A value of n represents n
ZIP codes found in the test data with the
corresponding column and row numbers
as the first and second digits of the ZIP
code. For example, there were five ZIP
codes in the test dataset beginning with the
two digits ‘1 4’.

Table 2. A list of all MLP metaclasses
needed for the model, including the not
needed metacl ass numbered as 26.

MLP Metaclass

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 0

11 0 - 1

12 1 - 2

13 2 - 3

14 3 - 4

15 5 - 6

16 6 - 7

17 7 - 8

18 8 - 9

19 0 - 1 - 2

20 2 - 3 - 4

21 3 - 4 - 5

22 4 - 5 - 6

23 0 - 2 - 3 - 4

24 0 - 1 - 2 - 3 - 4

25 5 - 6 - 7 - 8 - 9

26 0 - 1 - 2 - 3 - 4 - 5 - 6

27 0 to 9

11

Finally, to classify the third, fourth and
fifth digits of a ZIP code, we used the last
metaclass listed in Table 2 {0, 1, 2, 3, 4, 5,
6, 7, 8, 9}. Recall that Morita and
colleagues [16] used five MLP neural
networks in their model to classify the five
different metaclasses of digits found in
Brazilian bank check dates. The
performance of their model on four digit
years was 100%. On two digit days
performance was 93.2% and on two digit
years the performance was 97.2%. (The
discrepancy between performance on two
digit years and two digit days was
explained by the fact that year always
appears at the end of a date on Brazilian
bank checks, which led to an improvement
in the segmentation and, thus, recognition
of two digit years.) Liu and colleagues [4]
also tested a MLP network as one of the
classifiers in their model to recognize
handwritten ZIP codes. Their model
integrated segmentation and a single MLP
for recognition and did not make use of
domain knowledge (e.g. metaclasses of
digits). When trained without outliers,
their model’s performance was 63.99%.
However, when trained with outliers the
model’s performance was 89.22%. (This
compared favorably to the best
performance of 90.37% obtained using the
LQDF classifier in their model.) Due to
the success of MLP classifiers in both
studies and the desire to extend the work
of both studies, we also used MLP
classifiers in our model.

Classifier structure. The input to each
network used for classification is a feature
vector of length 13. The hidden layer in
each network contains an empirically
determined number of hidden units, each
of which is connected to all input and
output units. The number of hidden units
for all of the networks is five, with the
exception of the last two ne tworks (26, 27)
shown in Table 2. The network numbered
26 requires seven hidden units while the
one numbered 27 requires nine hidden
units. The output layer for each of the

MLP networks contains a number of
output units corresponding to the number
of digits in each metaclass. For instance, a
MLP network intended to classify whether
a given digit is a 4 (metaclass {4}) must
have two output nodes in the output layer,
one for the digit 4 and one for any other
digit. A MLP network intended to classify
a particular digit as 6 or 7 (metaclass {6,
7}) must have three nodes in the output
layer, one for the digit 6, one for the digit
7, and one for any other digit, for example.
Training data. To train the classifiers we
used the same dataset used by Liu et al.
[4]. The classifiers were trained on data
compiled from the NIST Special Database
19 (SD19) [21]. We used 66,214 digit
samples from the segmented hand-printed
digits found in SD19. We also generated
16,000 outlier training patterns from the
training digit data. This idea of combining
outliers with the training data in order to
improve subsequent classification has been
successfully used by Liu et al. [4] and by
Lauer et al. [8]. We generated outlier
patterns, using the technique of Liu et al.
[3], by merging and splitting training
images. A pair of digit images generated
four outlier patterns: full-full combination,
full-half combination, half-full
combination, and half-half combination as
shown in Figure 10.

Figure 10. A sample of outliers generated
from the NIST SD19 dataset [21].

The patterns were generated by first
arbitrarily selecting two digits (see top of

12

Figure 10). The first digit is split vertically
into two parts, A and B. The second digit
is also split vertically into two parts, C and
D. In order to generate four outliers, parts
must be joined together as follows: A, B,
C will make one outlier (Full, Half). Then,
B, C, D will make another outlier (Half,
Full). Then A, B, C, D combined together
make another outlier (Full, Full). Finally,
B and C combined make still another
outlier (Half, Half).
Testing data. The system was tested on
436 5-digit ZIP code images found on
CEDAR CDROM-1 in the Binary ZIP
code directory (BINZIP). These images
were used by Liu et al. [4] to test their
classification methods. The images were
extracted from live mail images of USPS
[1].

Results and Discussion

Our aim was to achieve the
following goals: (1) determine if the
technique of metaclasses introduced by
Morita et al. [16] can be extended to the
domain of U.S. ZIP codes, and (2) test the
conjecture of Liu et al. [4] that an
integrated segmentation and recognition
stage is necessary for machine recognition
of handwritten ZIP codes. Regarding this
latter goal, we tried to keep our model as
close as possible to theirs, but without
using an integrated segmentation and
recognition stage. Instead, we used distinct
segmentation and recognition stages. We
also incorporated the metaclass technique
of Morita et al. [16] (domain knowledge)
into our recognition stage. Other than these
key differences, we tried to make our
model as similar to the model of Liu et al.
[4] as possible. For example, our
segmentation is similar to their pre-
segmentation. Both of our models used
MLP classifiers, and our MLP classifiers
and their MLP classifier were trained
using the same learning method.
Furthermore, we used the same base
training dataset and included outliers in
our training data that were generated by
the same method that they used to generate

outliers for their training data. Finally both
our model and their model were tested on
the same test dataset.

The performance of our model was
evaluated using the ‘test’ dataset found on
CEDAR CDROM-1 [1]. Since our model
assumes prior knowledge of destination
state, this information was identified
beforehand. To achieve recognition of a
given ZIP code, the segmented vectors for
a ZIP code, along with the destination
state, are passed to the recognition module.
This recognition module invokes the
appropriate metaclass (MLP network)
based on the given state and digit position.

To test our model, we used two
different versions. The first version of our
model used domain knowledge as has been
described. That is, the segmentation stage
assumed five digit ZIP codes, and the
recognition stage used the digit
metaclasses technique. The second version
of our model applied domain knowledge in
the segmentation stage only (i.e. the
knowledge that ZIP codes contain five
digits), and it did not assume knowledge of
the destination state or ZIP code structure
in the recognition stage. That is, it used
only a single MLP network which
classifies each digit as one of the ten
possible digits. The two versions of our
model allowed measuring the effectiveness
of applying domain knowledge to the
recognition of handwritten ZIP codes.
Specifically, it allowed us to test whether
the metaclasses technique employed by
Morita et al. [16] would also succeed in
machine recognition of U.S ZIP codes,
because the first version of our model used
this metaclasses technique, while the
second version of our model did not.

The correct recognition rate
achieved by the first version using the
metaclasses technique was 88.76% with no
rejection. The performance of the second
version (which did not use the metaclasses
technique) was 75.69% with no rejection
(see Table 4). Comparing the results of the
first version to the second version, it is
clear that using domain knowledge, in the

13

form of the metaclasses technique,
improves the recognition of handwritten
ZIP codes.

Model Performance

Version 1 of our model
using metaclasses
technique
(domain knowledge)

88.76%

Version 2 of our model
not using metaclasses
technique
(no domain knowledge)

75.69%

Liu and colleagues MLP
model

89.22%

Table 4. Results of our model and that of

Liu et al. [4].

Further, these results clearly show that the
metaclasses technique used by Morita et
al. [16] in machine recognition of
Brazilian bank check dates is also quite
effective in machine recognition of U.S
ZIP codes. Testing two versions of our
model – one with domain knowledge and
one without – also allowed us to examine
the claim by Liu et al. [4] that machine
recognition of ZIP codes requires an
integrated segmentation and recognition
stage. The version of our model which did
not use domain knowledge (version 2) was
similar to their model with the major
exception that their complex integrated
segmentation and recognition module was
replaced in our model by a recognition
module that used just one MLP to classify
each of the five digits found by our
segmentation module. The performance of
the first version of our model with domain
knowledge used in the recognition module
was 88.76%. Meanwhile the performance
of the second version of our model with no
domain knowledge in the recognition
model was 75.69%. These results show the
effectiveness of applying domain
knowledge to the recognition of
handwritten ZIP codes. Compared to the
results of our models, the recognition

performance reported by Liu and
colleagues [4] was 89.22% , (see Table 4).
This implies that when domain knowledge
is not used an integrated segmentation and
recognition module may be necessary for
ZIP code recognition. However, when
domain knowledge is used, an integrated
segmentation and recognition module may
not be necessary.

CONCLUSION

Results of this study have two
important implications. First, a complex
problem such as recognizing ZIP codes
can have a simple, straightforward
solution. Recall that Liu and colleagues [4]
claimed that such problems could not be
solved without having an integrated
segmentation a nd recognition module. We
have shown that this is not necessarily
true. Our model uses a distinct
segmentation module followed by a
recognition module employing domain
knowledge, and it performed comparably
to their model. Compared to their model,
ours took a simpler approach to solve the
problem. Our segmentation module is
straightforward, including some of the
same elements of their “pre -segmentation”
module. In the recognition module, even
though we used 26 neural networks in our
model, these networks were not complex
and were easy to train.

The second implication is that
domain knowledge can aid in the
recognition of ZIP codes. Specifically, the
effectiveness of the metaclasses technique
of Morita et al. [16] extends beyond the
recognition of Brazilian bank check dates
to recognition of U.S. ZIP codes. Perhaps
this technique could also be applied to
solve other digit string problems such as
dollar amount on checks, and social
security number or driver license number
on forms. An indication for the
effectiveness of domain knowledge in
recognizing handwritten ZIP codes was
shown by comparing the one version of
our model, which used the metaclasses
technique in the recognition stage, to a

14

second version, which did not use the
metaclasses technique in the recognition
stage. The version which used domain
knowledge in the recognition stage had
much better recognition performance than
the version which did not use domain
knowledge. To tie these two discoveries
together, the claim of Liu et al. [4] about
the need for integrated segmentation and
recognition seems reasonable when
domain knowledge is not used. However,
when domain knowledge is applied, there
seems to be no need for a complex model
that integrates segmentation with
recognition.

REFERENCES

[1] CEDAR CDROM-1 Specifications of the
Databases. Retrieved September 8, 2005, from
http://www.cedar.buffalo.edu/Databases/CDROM1
[2] C. Gonzalez, E. Woods, Digital Image
Processing, second ed., Prentice Hall, New Jersey,
2002.
[3] C.L. Liu, S. Hiroshi, F. Hiromichi, Performance
evaluation of pattern classifiers for handwritten
character recognition, International Journal on
Document Analysis and Recognition (IJDAR) 4,
(2002) 191-204.
[4] C.L. Liu, K. Nakashima, H. Sako, H. Fujisawa,
Integrated Segmentation and Recognition of
Handwritten Numerals: Comparison of
Classification Algorithms, International Workshop
on Frontiers in Handwritten Recognition (IWFHR),
8 (2002) 303 -308.
[5] C.L. Liu, K. Nakashima, H. Sako, H. Fujisawa,
Handwritten Digit Recognition Using State-o f-the-
Art Techniques, Pattern Recognition, 36 (2002)
2271-2285.
[6] C.L. Liu, H. Sako, H. Fujisawa, Effects of
Classifier Structures and Training Regimes on
Integrated Segmentation and Recognition of
Handwritten Numeral Strings, Pattern Analysis and
Machine Intelligence, (2004) vol. 26, No. 11. 1395 -
1407.
[7] D. Bouchaffra, V. Govidaraju, S.N. Sirihari,
Recognition of Strings Using Nonstationary
Markovian Models: An Application in ZIP Code
Recognition. Conference on Computer Vision and
Pattern Recognition (CVPR). (1999) 2174-2179.
[8] F. Lauer, C.Y. Suen, G. Bloch, A trainable
feature extractor for handwritten digit recognition,
Pattern Recognition, 40 (2007) 1816-1824.
[9] H. Rababaah, Asphalt Pavement Crack
Classification Using AI and Computer Vision,
Masters Thesis , Indiana University, (2005).

[10] I. Chaaban, M.R. Scheessele, Human
Performance on the USPS Database. Tech. Rep.
IUSB (2007) TR-20070619-1.
[11] I. Chaaban, M.R. Scheessele, Human
Performance in Recognition of Handwritten ZIP
Codes from the CEDAR Database. Tech. Rep.
IUSB (2008) TR-20080805-1
[12] J.G. Etgen, Salas and Hille’s Calculus: One
Variable, eighth ed., John Wiley & Sons, INC.
1999.
[13] J. Mead, Speed Reading, Journal of
University of Buffalo Research, (1991) vol1.1 page
2 and 3. Retrieved April 8, 2005, from
http://www.cedar.buffalo.edu/pub_docs/article41.ht
ml.
[14] L.G. Shapiro, C.G. Stockman, Computer
Vision, second ed., Prentice Hall, New Jersey,
2002.
[15] L.O. Zhang, C.Y. Suen, Recognition of
Courtesy Amounts of Bank Checks based on a
Segmentation Approach, International Workshop
on Frontiers in Handwriting Recognition (IWFHR),
(2002) 298-302.
[16] M. Morita, R. Sabourin, F. Bortolozzi, C.Y.
Suen, Segmentation and recognition of handwritten
dates: a HMM-MLP hybrid approach, International
Journal on Document Analysis and Recognition
(IJDAR) 6, (2004) 248-262.

[17] P.Y. Simard, D. Steinkraus, J.C. Platt, Best
practices for convolutional neural networks applied
to visual document analysis, in: Proceedings of the
Seventh International Conference on Document
Analysis and Recognition, vol. 2, Edinburgh,
Scotland, (2003) 958-962.
[18] S. Russell, P. Norvig, Artificial Intelligence: A
Modern Approach, second ed., Prentice Hall, New
Jersey, 2002.
[19] T. Kohonen, The Self-Organizing Map, Proc.
IEEE (1990) vol. 78, 1464-1480.
[20] X. Fan, G. Fan, D. Liang, Joint Segmentation
and Recognition of License Plate Characters,
Image Processing. IEEE (2007) vol. 4, IV-353-IV –
356.
[21] Y. LeCun, The MNIST database of
handwritten digits. Retrieved March 15, 2006, from
http://yann.lecun.com/exdb/mnist/index.html.
[22] ZIP -Codes. Retrieved March 15, 2006, from
http://www.zip -codes.com.

ACKNOWLEDGEMENTS

A special thanks to Dr. Michael R.
Scheessele, Dr. James Wolfer, and Dr. Yi
Cheng , for their time and useful
comments.

