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ABSTRACT 

We present a simple system that exploits 
domain knowledge to improve the 
segmentation and recognition of 
handwritten ZIP codes. Specifically, we 
show that the concept of metaclasses of 
digits, introduced by Morita et al. [16] for 
recognition of Brazilian bank check dates, 
can be extended to ZIP code recognition. 
We also show that, when this domain 
knowledge is present, integrated 
segmentation and recognition is not 
required for the recognition of handwritten 
ZIP codes, as claimed by Liu et al. [4].  

INTRODUCTION 

Machine recognition of handwritten digits 
is very challenging. The difficulties and 
complexity of this task lie in the fact that a 
system must be able to recognize 
handwritten digits produced by different 
people, using different instruments. A 
system has to deal with widely different 
sizes and slants, as well as different shapes 
and widths of the strokes, for example. 
Accordingly, many approaches and 
methods have been proposed for pre-
processing, feature extraction, 
classification and/or learning of 
handwritten digit images.  

Handwritten digit recognition 
research concentrates on either individual 
digits or digit strings. With respect to 
recognition of individual handwritten 
digits, machine vision has achieved an 
accuracy of 99.6% [17]. By comparison, 
humans recognize 97.63% of individual 
handwritten digits [10]. Many domains 
require recognition of digit strings, as 

opposed to individual digits however. 
Some examples are automated sorting of 
mail by postal code [7], automated reading 
of checks [15] and tax returns, and data 
entry for hand-held computers. In these 
domains, handwritten digits rarely appear 
isolated.  Instead they appear as part of a 
string of digits where some digits may 
touch and/or overlap. In many of these real 
world applications, the images are 
processed by human operators. However, 
automation may improve production and 
cut costs. For this to happen, performance 
of an automated system should compare 
favorably to human performance. Such 
comparison is also an essential component 
in determining whether the problem has 
been solved or not.  

In the domain of bank check 
processing, Morita and colleagues [16] 
developed a system that uses the Hidden 
Markov Model (HMM) and the Multilayer 
Perceptron (MLP) to segment and 
recognize unconstrained handwritten dates 
on Brazilian bank checks. The system 
processes the three subfields that make up 
the date (day, month, and year). In order to 
reduce the date lexicon size, Morita and 
colleagues used domain knowledge, which 
enabled them to reduce the complexity of 
the recognition process. This was possible 
because the lexicons for day and year are 
known. For example, in a two digit day the 
first digit can only be 0, 1, 2, or 3, while 
the second digit can range from 0 to 9. A 
similar approach was applied to two/four 
digit years. They restricted checks to just 
those written after 1990 and before 2029. 
In a two digit year the first digit can then 
be 0, 1, 2, or 9. The second digit can range 
from 0 to 9. In a four digit year, the first 
digit can only be 1 or 2; similarly the 
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second digit can only be 0 or 9. They used 
five MLP neural networks, each using one 
hidden layer, to classify the  five different 
metaclasses of digits. For example, one 
MLP network classified the digits in the 
metaclass consisting of 0, 1, 2 and 3. It had 
one hidden layer with 70 hidden units. 
Another network classified the digits 0 
through 9 using one hidden layer with 80 
hidden units, and so forth.  The hidden 
layer in each network contained an 
empirically determined number of hidden 
units, each of which connected to all input 
and output units. The performance of this 
system on four digit years was 100%. On 
two digit days performance was 93.2%, 
and on two digit years performance was 
97.2%.  The discrepancy between 
performance on two digit years and two 
digit days can also be explained by their 
use of domain knowledge. Specifically, 
they exploited the fact that year a lways 
appears at the end of a date. They used this 
knowledge to improve segmentation of the 
year from the rest of the date, and the 
improved segmentation led to improved 
recognition.  

ZIP code recognition is another 
very interesting problem, due to the 
benefits of having an accurate automated 
system that can sort letters at a high rate.  
On average a postal worker can sort about 
800 letters an hour. On the other hand, an 
automated sorting machine, reading 
printed ZIP codes with an optical scanner 
is estimated to process about 37 times 
more than the postal worker at a fraction 
of the cost [13]. Such performance would 
also be desirable for handwritten ZIP 
codes. Liu and colleagues [4] compared 
different classifiers and learning methods 
in the recognition of handwritten ZIP 
codes. The classifiers compared were 
single-layer perceptron (SLP), multi-layer 
perceptron (MLP), radial basis function 
classifier (RBF), polynomial classifier 
(PC), learning vector quantization (LVQ), 
modified quadratic discriminant function 
(MQDF), and learning quadratic 
discriminant function (LQDF). Each 

classifier had two or three variations 
depending on the learning method, such as 
maximum likelihood estimation (MLE), 
discriminative learning (DL), or enhanced 
discriminative learning (EDL). The 
method of maximum likelihood is a 
general method of estimating parameters 
of a population by values that maximize 
the likelihood of a sample [5]. The 
discriminative learning method on the 
other hand, updates parameters iteratively 
to separate the patterns of different classes. 
The enhanced version of discriminative 
learning is equivalent to DL, except that in 
EDL the training is done with outliers [4]. 
The first classifier they tested was the 
SLP. A single layer perceptron has an 
input and output layer. Each neuron in the 
output layer of their network was 
connected to each input neuron. When 
trained with the EDL method and forced to 
make a decision without rejection, this 
network’s correct recognition rate was 
74.31%.  This is probably because this 
typ e of network is limited to only a single 
layer. They also tested a MLP network. 
With one or two hidden layers, this 
network can approximate virtually any 
input-output map, by learning to transform 
input data into a desired response. The 
MLP’s correct recognition was 89.22% 
without rejection using the same learning 
method. When using the EDL method, 
both the RBF and PC produced similar 
results to that of the MLP. The RBF 
correct rate without rejection was 87.84%, 
and the PC had a correct rate of 89.91% 
without rejection. The LVQ classifier was 
also tested. LVQ is a competitive learning 
algorithm, described sometimes as the 
supervised version of Kohonen’s Self-
Organizing Map  [19]. Percent correct for 
the LVQ classifier was 87.61% with no 
rejections. The MQDF classifier, described 
by Liu et al. [4] as the MLE version of 
LQDF, was also tested, and it had a correct 
rate of 87.61% without rejection. Finally, 
the LQDF classifier was tested to reveal a 
90.37% correct rate without rejection.  
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In order to test these classification 
methods, Liu and colleagues [4] developed 
a new model. First, the model pre-
processed the string image to prepare it for 
pre-segmentation. In the pre -segmentation 
stage, connected component labeling was 
applied. To handle the cases of touching 
digits, the model analyzed the upper and 
lower profile curves of any touching digits 
in order to generate a candidate cut. 
Heuristic rules were also applied to ensure 
that the candidate cut would not split a 
single digit. Their pre-segmentation stage 
was followed by an integrated 
segmentation and recognition (ISR) stage. 
In this stage Liu et al. [4] combined 
dynamic programming (DP) search and 
digit recognition. Each of the character 
classifiers described earlier was used to 
assign class scores to the candidate 
patterns generated in the pre-segmentation 
stage. The optimal pattern was then found 
by DP search based on class scores given 
by the classifiers. According to Liu and 
colleagues [4], the digits in a ZIP code 
cannot be reliably segmented in a distinct 
stage prior to recognition. They claimed 
that the handwritten ZIP code problem 
cannot be solved without integrated 
segmentation and recognition.  Integrated 
segmentation and recognition was used by 
many researchers in different areas (e.g. 
Xin and colleagues [20] used ISR to 
recognize characters on license plates; Liu 
et al. [6] also showed how ISR can be used 
in the recognition of numeral strings). The 
recognition portion of this integrated 
segmentation and recognition stage tested 
the different types of classification 
methods described above. The LQDF 
classifier, as noted, had the best 
performance.  The system was tested on 
436 5-digit ZIP code images from CEDAR 
CDROM-1 [1]. The ZIP code images were 
obtained by USPS from actual mail 
images. Liu and colleagues [4] reported a 
correct recognition rate of 90.37%, which 
appears to be the best performance to date 
in machine recognition of handwritten ZIP 

codes. By comparison, humans recognize 
98.39% of handwritten ZIP codes [11]. 

Unlike the Brazilian bank check 
date recognition system of Morita et al. 
[16], domain knowledge was not used in 
the U.S. ZIP code recognition system of 
Liu et al [4]. Might the metaclasses 
technique of Morita et al. [16] generalize 
from the case of Brazilian bank check 
dates to the case of U.S. ZIP codes? 
Furthermore, if such a domain knowledge 
technique were applied to automated ZIP 
code recognition, would integrated 
segmentation and recognition be required, 
as claimed by Liu et al. [4], or might a 
distinct segmentation stage followed by  a 
distinct recognition stage work just as 
well? Our work addresses both questions.  

MODEL 

 A key feature of our model is that it 
incorporates domain knowledge. The 
structure of ZIP codes and the state of 
destination can be exploited to make the 
segmentation and recognition processes 
more accurate. Understanding the structure 
of ZIP codes can significantly reduce the 
range of possible classes to consider 
during the recognition process, thereby 
increasing accuracy. For example, in a five 
digit ZIP code, the first digit indicates one 
of ten large geographic areas in the 
country. It represents a certain group of 
U.S. states, ranging from zero in the 
Northeast to nine in the far West. The 
second and third digits indicate 
metropolitan areas and sectional centers. 
The fourth and fifth digits represent more 
specific areas such as local post offices or 
postal zones in larger cities [22]. 
Combining this knowledge with the state 
of destination radically reduces the number 
of ZIP codes to consider during 
recognition. 
 Our model consists of two stages: a 
segmentation stage and a recognition 
stage. The segmentation stage exploits the 
fact that a ZIP code is composed of 5 
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digits1. Utilizing the destination state, the 
recognition stage tries to recognize the  
five segments derived from the 
segmentation stage, as shown in Figure  1. 
 

 
 
Figure 1. The two stages (segmentation & 
recognition) of our model. 

 
Before describing our model and 

its performance, we make explicit certain 
assumptions, as well as our predictions. 
With respect to domain knowledge, as 
mentioned above, our model assumes five-
digit ZIP codes. Also knowledge of the 
structure of ZIP codes (as briefly described 
above) is built into the model. Further, our 
model assumes perfect knowledge of the 
state of destination as an input. This latter 
assumption requires some justification. 
First, in the real world, destination state 
would come just before ZIP code. 
(Alternatively, it may appear on the line 
just above the ZIP code line.) Given that 
English is normally read from left to right 
and from top to bottom, it is reasonable to 
assume that humans would have 
knowledge of destination state when trying 
to read a ZIP code. We want to be able to 
compare our model’s performance to 
human performance. Therefore, in order to 
make this comparison fair, destination 
state is input to our model for each ZIP 
code to be recognized. Second, the main 
                                                 
1 We focused on five-digit ZIP codes vs. nine -digit 
ZIP codes for the following reasons: (1) Nine-digit 
ZIP codes are optional. (2) The testing data found 
on the standard CEDAR CDROM-1 did not have 
enough nine-digit ZIP codes for testing. (3) Liu and 
colleagues [4] used five-digit ZIP codes in testing 
their system, and so did we to allow for seamless 
comparison with their work.  
 

purpose of this study is to address the two 
questions described in the introduction. 
Will the metaclasses technique of Morita 
et al. [16] generalize beyond Brazilian 
bank check dates to U.S ZIP codes? Does 
machine recognition of handwritten ZIP 
codes require an integrated segmentation 
and recognition stage, as claimed by Liu et 
al. [4], when domain knowledge is 
present? To decisively answer each 
question, knowledge of correct destination 
state for each ZIP code must be assumed 
by the model2.  

Segmentation 

One challenge of classifying 
handwritten ZIP codes is the fact that in 
real applications the image extracted from 
a piece of mail will not necessarily appear 
as five separated digits. This is due to 
imperfect handwriting, as shown in Figure 
2. 

 
Figure 2. Sample patterns from the 
CEDAR CDROM-1 database.  
 

In addition, extra noise (such as bar codes, 
stamps and other markings made by the 
post office) is added to the image during 
processing. Further, moisture and handling 
may smear or smudge the handwriting on 
an envelope. To overcome these 
challenges and to achieve segmentation, a 
                                                 
2 While our goal was not to develop our model for 
real -world deployment, it could easily be modified 
for this purpose by taking into account a relaxation 
of the assumption of correct destination state for a 
given ZIP code.  
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ZIP code pattern goes through three phases 
in our model (see Figure 1).  

In the first phase, the ZIP code 
pattern is prepared for division into five 
separate patterns, each representing a digit 
in the ZIP code. First the pattern is 
converted into a binary image. This allows 
for easy processing of patterns. Then, from 
the pattern a median filter removes any set 
of connected pixels with an area-size less 
than an empirically determined threshold 
(3×3). This step is necessary because it 
helps to remove some of the added noise 
discussed earlier. Next, the image closing 
algorithm is applied to the pattern to 
perform morphological “closing” on the 
binary digits found in the image (see 
Figure 3) [2]. This step will enhance the 
shape of each digit and therefore allow for 
better classification later in the process 
[18]. 

 
Figure 3. Sample patterns extracted from 
ZIP codes found on the CEDAR CDROM-
1 database. The patterns show how some 
digits are incomplete because of gaps. 

 
 The second phase of segmentation 
finds all connected components in a given 
ZIP code pattern. A connected component 
is a set of pixels sharing some feature 
(blackness of the pixel) where each pixel 
in the set neighbors at least one other pixel 
in the set. The purpose of this step is to 
isolate the digits which make up the ZIP 
code pattern. The connected components 
algorithm checks four neighboring pixels 
to determine connectivity to other pixels 
[14].  

Because a ZIP code is composed of 
5 digits, the second phase can have three 
possible outcomes. The first outcome 
would be to get five connected 
components with a relatively similar size. 
This would imply that the pattern was 
successfully segmented into five digits. 
The second outcome would be to get less 

than five connected components. This 
could mean that two or more digits in the 
ZIP code are touching or overlapping. If 
so, they must be separated. The third 
outcome would be to get more than five 
connected components. This particular 
outcome would suggest that there may be 
one or more individual digits that are 
broken into multiple pieces which 
therefore must be joined together.   

The third phase of segmentation 
involves separating connected digits (if 
necessary) or joining multiple segments of 
a digit (if necessary) found in a ZIP code. 
Separating touching digits. When two or 
more digits are touching or overlapping, 
separating them is particularly challenging. 
An improper separation of these digits 
tends to leave some of the newly separated 
digits with noise or parts of the touching 
digit(s). In the separation process a digit 
might lose a piece of a stroke to a 
neighboring digit, or a digit might lose a 
chunk because of overlapping. These 
problems arise because finding the precise 
splitting path that separates touching digits 
is nontrivial (see Figure 4). 

 
 

Figure 4. A sample of ZIP codes from 
CEDAR CDROM-1. The samples show 
that finding the precise splitting path is 
nontrivial. 

 To split touching digits our 
algorithm starts by finding the bounding 
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box of the entire ZIP code in a given 
pattern. Then the algorithm divides the 
area of the bounding box vertically into 
five relatively equal segments. This 
algorithm tends to leave segments with 
noise or parts of the neighboring digit(s). 
In order to filter out the noise found in 
each of the five segments, the largest 
component is located in each segment and 
everything else (noise or parts of 
neighboring digits) is discarded.  The 
result of this algorithm is five relatively 
noise-free segments each representing a 
single isolated digit ready to be converted 
into a feature vector. The process of 
converting a ZIP code pattern into a vector 
is described in the Feature Extraction 
section.   
Joining segments of a digit.  Joining 
segments that belong to one digit is as 
challenging as separating touching digits. 
The challenges here are to determine 
which segment belongs to which digit and 
whether a segment is part of a digit or 
simply noise. Furthermore, using the 
improper joining algorithm may leave 
some of the digits with artifacts or noise. 
These problems arise because finding the 
precise technique to join segments is 
nontrivial. A digit may occur in pieces as a 
result of three things: not having the 
proper writing tool (dry pen), noise or 
extra markings added during processing, 
or the writer did not properly connect the 
digit. By analyzing various cases of broken 
digits, we found that the digit which often 
occurs in two segments is the digit 5. With 
the exception of the digit 4, the digit 5 is 
the only digit which often is written in two 
parts (see Figure 5). Therefore, the digit 5 
is perhaps more likely to appear in two 
parts than any of the other digits.  
 

 
Figure 5. Sample patterns extracted from 
ZIP codes found on the CEDAR CDROM-
1 database. The patterns show how the 
digit 5 is sometimes presented in two 
segments. 

To solve this problem we used the 
single line test algorithm. This algorithm is 
commonly used in mathematics [12]. It 
tests columns of pixels one at a time as it 
moves across the entire ZIP code starting 
from the left -hand-side. If the column 
being tested intersects the area of two of 
the connected components found earlier, 
then those two components are joined. In 
case of a failure to find two components to 
connect, the ZIP code is simply divided 
into five equal segments as described in 
the previous section on separating 
touching digits. 

Feature Extraction 

 Since different individuals can 
have various writing styles, the features 
extracted from each digit must be 
independent of size, width of the strokes, 
and other elements of the writing styles of 
the individuals. To attain such a feature 
vector a matrix of pixels is first sampled 
from each digit pattern, as shown in Figure 
6.  

 
 
Figure 6. Normalizing the segmented 
digits by sampling. 
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Determining the proper sample size means 
extracting meaningful features using the 
smallest sample size possible. Careful 
evaluation of the size, width of the strokes, 
and the shapes of the training patterns 
indicated that a sample size of 208 pixels 
(13 × 16) would provide good 
representation of the patterns3. Then, the 
matrix is reduced to a vector by projecting 
it onto the X-axis, as shown in Figure 7.  

 
Figure 7. Converting the 13 × 16 matrix 
into a vector by projecting onto the X-axis. 
 

The resulting feature vector contains 
values that represent the number of black 
pixels found in each column of the matrix. 
A similar technique was used by Rababaah 
[9] to reduce the size of asphalt pavement 
crack patterns. To illustrate the uniqueness 
of these vectors we created two graphs. 
These graphs show that despite the 
resemblance in shape between the digit 0 

                                                 
3 For some small extracted digits, the 13 × 16 

sample size presented a problem. Because the 

sample size was greater than the size of the digit 

pattern in these cases, there were not enough pixels 

in the pattern from which to sample. To solve this 

problem we used all the pixels in the pattern and 

completed the rest of the vector with zeros.      
 

and 8, their vectors are clearly unique, see 
Figure 8.  

 
Figure 8. The top graph shows the 
average of 10 vectors each representing 
the ‘0’ pattern. The bottom graph shows 
the average of 10 vectors each 
representing the ‘8’ pattern.  

 

Recognition 

 The task of the recognition stage is 
to recognize the string of individually 
segmented digits.  Utilizing the destination 
state, the recognition stage tries to 
recognize each digit starting with the left-
most digit, as shown in Figure 9.  

 
 
Figure 9. The knowledge-based 
recognition model starts with five 
unknown segmented digits. The model 
will first attempt to classify the left -most 
digit. If unsuccessful the ZIP code is 
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rejected, otherwise it will go on to classify 
the second digit. If the second digit is 
classified correctly the model will classify 
the remaining three digits, otherwise it 
will stop. (Indiana is the state assumed in 
this example.) 

Because destination state determines the 
first two digits of a ZIP code, the system 
will make a decision for each of the first 
two digits on whether it is feasible to 
continue or not. Specifically, the 
metaclasses technique of Morita et al. [16] 
will be applied to each of the first two ZIP 
code digits. For example, if the destination 
state is Indiana, then the first digit must be 
a 4, because all ZIP codes in the state of 
Indiana start with the digit 4. Thus, the 
metaclass for the first digit of an Indiana 
ZIP code is {4}. Before going any further, 
the model must verify that the first digit is 
a 4, as shown at the top of Figure 9. If it is 
not, the model will stop and reject the ZIP 
code. On the other hand, if the first digit is 
a 4, then the model will proceed to classify 
the next digit. In this example, the model 
now must determine if the second digit is a 
6 or 7, because in the state of Indiana these 
are the only possible digits after the initial 
‘4’. Thus, the metaclass for the second 
digit of an Indiana ZIP code is {6, 7}. If 
the model classifies the second digit as a 6 
or 7, then it will classify the remaining 
three digits. Otherwise it will stop and 
reject the ZIP code, as shown in Figure 94. 
Recall that Morita and colleagues [16] 
used a similar strategy to classify 
handwritten dates (days/years) using 
domain knowledge. They were able to 
reduce the complexity of the recognition 
process by reducing the date lexicon size. 
This was possible because they knew the 
lexicons for day and year. For example, in 
a two digit day the first digit can only be 0, 
1, 2 or 3 while the second digit can range 
from 0 to 9. A similar approach was 
                                                 
4 Here, in order to allow for seamless compar ison 
to the results obtained by Liu et al. [4] rejection 
does not actually stop the processing of a given ZIP 
code. Instead the model passes the digits yet to be 
classified to another network which classifies each 
as one of the ten possible digits. 

applied to two and four digit years. For 
instance, in a two digit year, they only 
allowed the first digit to be 0, 1, 2 or 9. 
The second digit can range from 0 to 9. In 
their model, they identified five different 
metaclasses of digits: one metaclass for 
digits {0, 1, 2, and 3}, one for digits {0, 1, 
2, 9}, one for digits {1, 2}, one for digits 
{0, 9}, and one for digits {0 through 9}. 
We conjectured that the metaclass 
approach employed by Morita et al. [16] 
may also be useful in recognition of U.S. 
ZIP codes. Obviously, the set of 
metaclasses useful for handwritten ZIP 
code recognition will be different than the 
set of five metaclasses useful for 
recognition of Brazilian bank check dates, 
Morita et al. [16]. The necessary set of 
metaclasses for handwritten ZIP code 
recognition will now be described. 

Classification Method  

The recognition portion of this 
model was implemented using multi-layer 
perceptron (MLP) neural networks. Each 
individual network classified a distinct 
metaclass of digits. This was inspired by 
the use of distinct MLP classifiers for 
distinct metaclasses of digits in the study 
of Morita et al. [16]. One of ten MLP 
networks was used to classify the first digit 
of a ZIP code, depending on the state. 
Recall that in a five digit ZIP code the first 
digit corresponds to one of ten large 
geographic areas in the country. Therefore, 
we used ten networks (ten distinct 
metaclasses) to classify the first digit in a 
ZIP code. One MLP network classified the 
digits 6 and 7 (metaclass {6, 7}) for the 
second digit for the state of Indiana. 
Another classified the digits 0, 1, and 2 
(metaclass {0, 1, 2}) for the second digit 
for the state of Illinois, and so forth for 
other states. This strategy required a total 
of twenty-six different MLP networks. 
Also, by exploiting the structure and range 
of possible ZIP codes for each state, we 
were able to create a list of possible 
second digit(s) for each state, as shown in 
Table 1.  
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States (ZIP code starts with 0) Possible Second digit  States (ZIP code starts with 5) Possible Second digit  

CT Connecticut 6 IA Iowa 0 - 1 - 2 

M A Massachusetts 1 - 2 M N Minnesota 5 - 6 

M E Maine 3 - 4 MT Montana 9 

NH New Hampshire 3 ND North Dakota 8 

NJ New Jersey 7 - 8 SD South Dakota 7 

RI Rhode Island 2 WI Wisconsin 3 - 4 

VT Vermont 5   

  States (ZIP code starts with 6) Possible Second digit  

States (ZIP code starts with 1) Possible Second digit  IL Illinois 0 - 1 - 2 

DE Delaware 9 KS Kansas 6 - 7 

NY New York 0 - 1 - 2 - 3 - 4 M O Missouri  3 - 4 - 5 

PA Pennsylvania 5 - 6 - 7 - 8 - 9 NE Nebraska 8 - 9 

    

States (ZIP code starts with 2) Possible Second digit  States (ZIP code starts with 7) Possible Second digit  

DC District of Columbia 0 AR Arkansas 1 - 2 

M D Maryland 0 - 1 LA Louisiana 0 - 1 

NC North Carolina 7 - 8 OK Oklahoma 3 - 4 

SC South Carolina 9 TX Texas 5 - 6 - 7 - 8 - 9 

VA Virginia 0 - 2 - 3 - 4   

WV West Virginia 4 - 5 - 6 States (ZIP code starts with 8) Possible Second digit  

  AZ Arizona 5 - 6 

States (ZIP code starts with 3) Possible Second digit  CO Colorado 0 - 1 

AL Alabama 5 - 6 ID Idaho 3 

F L Florida 2 - 3 - 4 NM New Mexico 7 - 8 

GA Georgia 0 - 1 NV Nevada 8 - 9 

M S Mississippi 8 - 9 UT Utah 4 

T N Tennessee 7 - 8 WY Wyoming  2 - 3 

    

States (ZIP code starts with 4) Possible Second digit  States (ZIP code starts with 9) Possible Second digit  

IN Indiana 6 - 7 AK Alaska 9 

KY Kentucky 0 - 1 - 2 CA California 0 - 1 - 2 - 3 - 4 - 5 - 6 

M I Michigan 8 - 9 HI Hawaii 6 

OH Ohio 3 - 4 - 5 OR Oregon 7 

    WA Washington 8 – 9 

 

Table 1.  A grouping of states with same first ZIP code digit and all possible second digit(s) for each state [22].  
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This table shows how the second digit for 
some states can correspond to a single 
digit (e.g. Montana – 9), two digits (e.g. 
Indiana – 6,7), three digits (e.g. Missouri – 
3,4,5), four digits (e.g. Virginia – 0,2,3,4), 
five digits (e.g. Texas – 5,6,7,8,9) or seven 
digits (e.g. California – 0,1,2,3,4,5,6). 
Since some of these states share similar 
sets of possible second digit(s) - for 
example both Kansas and Indiana have the 
digits 6 and 7 as p ossible second digits – 
we were able to eliminate redundancies 
among metaclasses and compile a list of 
metaclasses needed for this model, as 
shown in Table 2. 
After analyzing the testing data found on 
CEDAR CDROM-1 [1] (the standard test 
database),  we found that the metaclass 
needed to classify whether the second digit 
in a California ZIP code is 0, 1, 2, 3, 4, 5 
or 6 can be eliminated due to insufficient 
testing data, as shown in Table 35. 
 

ZIP First Digit 

  0 1 2 3 4 5 6 7 8 9 

0 5 0 7 10 7 1 9 10 5 0 

1 1 7 8 0 1 0 0 1 0 0 

2 8 0 8 2 2 7 1 11 7 0 

3 6 7 0 0 13 7 11 8 6 0 

4 0 5 0 1 0 1 0 3 6 0 

5 6 0 4 7 1 7 1 0 6 8 

6 5 15 1 2 11 0 13 0 1 10 

7 5 1 2 10 0 3 0 12 6 11 

8 1 0 5 0 12 6 12 0 2 7 

S
ec

o
n

d
 D

ig
it 

9 1 8 7 9 4 2 1 0 6 13 

 

Table 3. We created a frequency matrix of 
the test dataset found on CEDAR 

                                                 
5 The t esting data found on CEDAR CDROM-1 [1] 
does not provide ZIP codes for California with 0, 1, 
2, 3, or 4 as the second digit. Therefore the 26th  
metaclass listed in Table 4 is not needed and can be 
replaced with the one that classifies the digits 5 and 
6 instead. 

CDROM-1 [1], according to the first and 
second digits. A value of n represents n 
ZIP codes found in the test data with the 
corresponding column and row numbers 
as the first and second digits of the ZIP 
code. For example, there were five ZIP 
codes in the test dataset beginning with the 
two digits ‘1 4’. 

 

 

Table 2. A list of all MLP metaclasses 
needed for the model, including the not 
needed metacl ass numbered as 26. 

 

# MLP Metaclass  

1 1 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

8 8 

9 9 

10 0 

11 0 - 1 

12 1 - 2 

13 2 - 3 

14 3 - 4 

15 5 - 6 

16 6 - 7 

17 7 - 8 

18 8 - 9 

19 0 - 1 - 2 

20 2 - 3 - 4 

21 3 - 4 - 5 

22 4 - 5 - 6 

23 0 - 2 - 3 - 4 

24 0 - 1 - 2 - 3 - 4 

25 5 - 6 - 7 - 8 - 9 

26 0 - 1 - 2 - 3 - 4 - 5 - 6 

27 0 to 9 
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Finally, to classify the third, fourth and 
fifth digits of a ZIP code, we used the last 
metaclass listed in Table 2 {0, 1, 2, 3, 4, 5, 
6, 7, 8, 9}. Recall that Morita and 
colleagues [16] used five MLP neural 
networks in their model to classify the five 
different metaclasses of digits found in 
Brazilian bank check dates. The 
performance of their model on four digit 
years was 100%. On two digit days 
performance was 93.2% and on two digit 
years the performance was 97.2%. (The 
discrepancy between performance on two 
digit years and two digit days was 
explained by the fact that year always 
appears at the end of a date on Brazilian 
bank checks, which led to an improvement 
in the segmentation and, thus, recognition 
of two digit years.) Liu and colleagues [4] 
also tested a MLP network as one of the 
classifiers in their model to recognize 
handwritten ZIP codes. Their model 
integrated segmentation and a single MLP 
for recognition and did not make use of 
domain knowledge (e.g. metaclasses of 
digits). When trained without outliers, 
their model’s performance was 63.99%. 
However, when trained with outliers the 
model’s performance was 89.22%. (This 
compared favorably to the best 
performance of 90.37% obtained using the 
LQDF classifier in their model.) Due to 
the success of MLP classifiers in both 
studies and the desire to extend the work 
of both studies, we also used MLP 
classifiers in our model.  
 
Classifier structure. The input to each 
network used for classification is a feature 
vector of length 13.  The hidden layer in 
each network contains an empirically 
determined number of hidden units, each 
of which is connected to all input and 
output units. The number of hidden units 
for all of the networks is five, with the 
exception of the last two ne tworks (26, 27) 
shown in Table 2. The network numbered 
26 requires seven hidden units while the 
one numbered 27 requires nine hidden 
units. The output layer for each of the 

MLP networks contains a number of 
output units corresponding to the number 
of digits in each metaclass. For instance, a 
MLP network intended to classify whether 
a given digit is a 4 (metaclass {4}) must 
have two output nodes in the output layer, 
one for the digit 4 and one for any other 
digit.  A MLP network intended to classify 
a particular digit as 6 or 7 (metaclass {6, 
7}) must have three nodes in the output 
layer, one for the digit 6, one for the digit 
7, and one for any other digit, for example. 
Training data. To train the classifiers we 
used the same dataset used by Liu et al. 
[4]. The classifiers were trained on data 
compiled from the NIST Special Database 
19 (SD19) [21]. We used 66,214 digit 
samples from the segmented hand-printed 
digits found in SD19. We also generated 
16,000 outlier training patterns from the 
training digit data. This idea of combining 
outliers with the training data in order to 
improve subsequent classification has been 
successfully used by Liu et al. [4] and by 
Lauer et al. [8]. We generated outlier 
patterns, using the technique of Liu et al. 
[3], by merging and splitting training 
images. A pair of digit images generated 
four outlier patterns: full-full combination, 
full-half combination, half-full 
combination, and half-half combination as 
shown in Figure 10. 

 
 

Figure 10. A sample of outliers generated 
from the NIST SD19 dataset [21]. 

 
The patterns were generated by first 
arbitrarily selecting two digits (see top of 
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Figure 10). The first digit is split vertically 
into two parts, A and B. The second digit 
is also split vertically into two parts, C and 
D. In order to generate four outliers, parts 
must be joined together as follows: A, B, 
C will make one outlier (Full, Half). Then, 
B, C, D will make another outlier (Half, 
Full). Then A, B, C, D combined together 
make another outlier (Full, Full). Finally, 
B and C combined make still another 
outlier (Half, Half).   
Testing data. The system was tested on 
436 5-digit ZIP code images found on 
CEDAR CDROM-1 in the Binary ZIP 
code directory (BINZIP). These images 
were used by Liu et al. [4] to test their 
classification methods. The images were 
extracted from live mail images of USPS 
[1].  

Results and Discussion 

Our aim was to achieve the 
following goals: (1) determine if the 
technique of metaclasses introduced by 
Morita et al. [16] can be extended to the 
domain of U.S. ZIP codes, and (2) test the 
conjecture of Liu et al. [4] that an 
integrated segmentation and recognition 
stage is necessary for machine recognition 
of handwritten ZIP codes. Regarding this 
latter goal, we tried to keep our model as 
close as possible to theirs, but without 
using an integrated segmentation and 
recognition stage. Instead, we used distinct 
segmentation and recognition stages. We 
also incorporated the metaclass technique 
of Morita et al. [16] (domain knowledge) 
into our recognition stage. Other than these 
key differences, we tried to make our 
model as similar to the model of Liu et al. 
[4] as possible. For example, our 
segmentation is similar to their pre-
segmentation. Both of our models used 
MLP classifiers, and our MLP classifiers 
and their MLP classifier were trained 
using the same learning method. 
Furthermore, we used the same base 
training dataset and included outliers in 
our training data that were generated by 
the same method that they used to generate 

outliers for their training data. Finally both 
our model and their model were tested on 
the same test dataset.  

The performance of our model was 
evaluated using the ‘test’ dataset found on 
CEDAR CDROM-1 [1]. Since our model 
assumes prior knowledge of destination 
state, this information was identified 
beforehand. To achieve recognition of a 
given ZIP code, the segmented vectors for 
a ZIP code, along with the destination 
state, are passed to the recognition module. 
This recognition module invokes the 
appropriate metaclass (MLP network) 
based on the given state and digit position.  

To test our model, we used two 
different versions. The first version of our 
model used domain knowledge as has been 
described. That is, the segmentation stage 
assumed five digit ZIP codes, and the 
recognition stage used the digit 
metaclasses technique. The second version 
of our model applied domain knowledge in 
the segmentation stage only (i.e. the 
knowledge that ZIP codes contain five 
digits), and it did not assume knowledge of 
the destination state or ZIP code structure 
in the recognition stage. That is, it used 
only a single MLP network which 
classifies each digit as one of the ten 
possible digits. The two versions of our 
model allowed measuring the effectiveness 
of applying domain knowledge to the 
recognition of handwritten ZIP codes. 
Specifically, it allowed us to test whether 
the metaclasses technique employed by 
Morita et al. [16] would also succeed in 
machine recognition of U.S ZIP codes, 
because the first version of our model used 
this metaclasses technique, while the 
second version of our model did not. 

The correct recognition rate 
achieved by the first version using the 
metaclasses technique was 88.76% with no 
rejection. The performance of the second 
version (which did not use the metaclasses 
technique) was 75.69% with no rejection 
(see Table 4). Comparing the results of the 
first version to the second version, it is 
clear that using domain knowledge, in the 
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form of the metaclasses technique, 
improves the recognition of handwritten 
ZIP codes.  

 
Model Performance 

Version 1 of our model 
using metaclasses 
technique  
(domain knowledge) 

88.76% 

Version 2 of our model 
not using metaclasses 
technique 
(no domain knowledge) 

75.69% 

Liu and colleagues MLP 
model 

89.22% 

Table 4. Results of our model and that of 

Liu et al. [4].  

 
Further, these results clearly show that the 
metaclasses technique used by Morita et 
al. [16] in machine recognition of 
Brazilian bank check dates is also quite 
effective in machine recognition of U.S 
ZIP codes. Testing two versions of our 
model – one with domain knowledge and 
one without – also allowed us to examine 
the claim by Liu et al. [4] that machine 
recognition of ZIP codes requires an 
integrated segmentation and recognition 
stage. The version of our model which did 
not use domain knowledge (version 2) was 
similar to their model with the major 
exception that their complex integrated 
segmentation and recognition module was 
replaced in our model by a recognition 
module that used just one MLP to classify 
each of the five digits found by our 
segmentation module. The performance of 
the first version of our model with domain 
knowledge used in the recognition module 
was 88.76%. Meanwhile the performance 
of the second version of our model with no 
domain knowledge in the recognition 
model was 75.69%. These results show the 
effectiveness of applying domain 
knowledge to the recognition of 
handwritten ZIP codes. Compared to the 
results of our models, the recognition 

performance reported by Liu and 
colleagues [4] was 89.22% , (see Table 4). 
This implies that when domain knowledge 
is not used an integrated segmentation and 
recognition module may be necessary for 
ZIP code recognition. However, when 
domain knowledge is used, an integrated 
segmentation and recognition module may 
not be necessary.  

CONCLUSION 

Results of this study have two 
important implications. First, a complex 
problem such as recognizing ZIP codes 
can have a simple, straightforward 
solution. Recall that Liu and colleagues [4] 
claimed that such problems could not be 
solved without having an integrated 
segmentation a nd recognition module. We 
have shown that this is not necessarily 
true. Our model uses a distinct 
segmentation module followed by a 
recognition module employing domain 
knowledge, and it performed comparably 
to their model. Compared to their model, 
ours took a simpler approach to solve the 
problem. Our segmentation module is 
straightforward, including some of the 
same elements of their “pre -segmentation” 
module. In the recognition module, even 
though we used 26 neural networks in our 
model, these networks were not complex 
and were easy to train.  

The second implication is that 
domain knowledge can aid in the 
recognition of ZIP codes. Specifically, the 
effectiveness of the metaclasses technique 
of Morita et al. [16] extends beyond the 
recognition of Brazilian bank check dates 
to recognition of U.S. ZIP codes. Perhaps 
this technique could also be applied to 
solve other digit string problems such as 
dollar amount on checks, and social 
security number or driver license number 
on forms. An indication for the 
effectiveness of domain knowledge in 
recognizing handwritten ZIP codes was 
shown by comparing the one version of 
our model, which used the metaclasses 
technique in the recognition stage, to a 
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second version, which did not use the 
metaclasses technique in the recognition 
stage. The version which used domain 
knowledge in the recognition stage had 
much better recognition performance than 
the version which did not use domain 
knowledge.  To tie these two discoveries 
together, the claim of Liu et al. [4] about 
the need for integrated segmentation and 
recognition seems reasonable when 
domain knowledge is not used. However, 
when domain knowledge is applied, there 
seems to be no need for a complex model 
that integrates segmentation with 
recognition.  
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