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ABSTRACT 

All database systems must be able to respond to 
requests for information from the user—i.e. process 
queries.  Obtaining the desired information from a 
database system in a predictable and reliable fashion is 
the scientific art of Query Processing .  Getting these 
results back in a timely manner deals  with the 
technique of Query Optimization .  This paper will 
introduce the reader to the basic concepts of query 
processing and query optimization in the relational 
database domain.  How a database processes a query as 
well as some of the algorithms and rule-sets utilized to 
produce more efficient queries will also be presented.  
In the last section, I will discuss the implementation 
plan to extend the capabilities of my Mini-Database 
Engine program to include some of the query 
optimization techniques and algorithms covered in this 
paper. 

1. INTRODUCTION 

Query processing and optimization is a fundamental, if 
not critical, part of any DBMS.  To be utilized 
effectively, the results of queries must be available in 
the timeframe needed by the submitting user—be it a 
person, robotic assembly machine or even another 
distinct and separate DBMS.  How a DBMS processes 
queries and the methods it uses to optimize their 
performance are topics that will be covered in this 
paper. 

In certain sections of this paper, various concepts will 
be illustrated with reference to an example database of 
cars and drivers.  Each car and driver are unique, and 
each car can have 0 or more drivers, but only one 
owner.  A driver can own and drive multiple cars.  
There are 3 relations: cars, drivers and car_driver with 
the following attributes: 

The vehicles relation: 
Attribute Length Key? 

vehicle_id 15 Yes 
make 20 No 
model 20 No 
year 4 No 

owned_by 10 No 
 
The drivers relation: 

Attribute Length Key? 
driver_id 10 Yes 
first_name 20 No 
last_name 20 No 
age 2 No 

 

The car_driver relation: 
Attribute Length Key? 

cd_car_name 15 Yes* 
cd_driver_id 10 Yes* 

2. WHAT IS A QUERY? 
A database query is the vehicle for instructing a DBMS 
to update or retrieve specific data to/from the 
physically stored medium.  The actual updating and 
retrieval of data is performed through various 
“low-level”  operations.  Examples of such operations 
for a relational DBMS can be relational algebra 
operations such as  project, join, select, Cartesian 
product, etc.  While the DBMS is designed to process 
these low-level operations efficiently, it can be quite 
the burden to a user to submit requests to the DBMS in 
these formats.  Consider the following request: 

“Give me the vehicle ids of all Chevrolet Camaros 
built in the year 1977.” 

While this is easily understandable by a human, a 
DBMS must be presented with a format it can 
understand, such as this SQL statement: 

select vehicle_id 
from vehicles 
where year = 1977 

Note that this SQL statement will still need to be 
translated further by the DBMS so that the 
functions/methods within the DBMS program can not 
only process the request, but do it in a timely manner. 
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3. THE QUERY PROCESSOR 
There are three phases  [12] that a query passes through 
during the DBMS’ processing of that query: 

1. Parsing and translation 
2. Optimization 
3. Evaluation 

Most queries submitted to a DBMS are in a high-level 
language such as SQL.  During the parsing and 
translation stage, the human readable form of the query 
is translated into forms usable by the DBMS.  These 
can be in the forms of a relational algebra expression, 
query tree and query graph.  Consider the following 
SQL query: 

select make 
from vehicles 
where make = “Ford” 

This can be translated into either of the following 
relational algebra expressions: 
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Which can also be represented as either of the 
following query trees: 

 ""Fordmake=σ  makeπ  

 makeπ  ""Fordmake=σ  

 vehicles vehicles 

And represented as a query graph: 

 

After parsing and translation into a relational algebra 
expression, the query is then transformed into a form, 
usually a query tree or graph, that can be handled by 
the optimization engine.  The optimization engine then 
performs various analyses on the query data, 
generating a number of valid evaluation plans.  From 
there, it determines the most appropriate evaluation 
plan to execute. 

After the evaluation plan has been selected, it is passed 
into the DMBS’ query-execution engine [12] (also 
referred to as the runtime database processor [5]), 
where the plan is executed and the results are returned. 

3.1 Parsing and Translating the Query 

The first step in processing a query submitted to a 
DBMS is to convert the query into a form usable by the 
query processing engine.  High-level query languages 
such as SQL represent a query as a string, or sequence, 
of characters.  Certain sequences of characters 
represent various types of tokens such as keywords, 
operators, operands, literal strings, etc.  Like all 
languages, there are rules (syntax and grammar) that 
govern how the tokens can be combined into 
understandable (i.e. valid) statements. 

The primary job of the parser is to extract the tokens 
from the raw string of characters and translate them 
into the corresponding internal data elements (i.e. 
relational algebra operations and operands) and 
structures (i.e. query tree, query graph). 

The last job of the parser is to verify the validity and 
syntax of the original query string. 

3.2 Optimizing the Query 

In this stage, the query processor applies rules to the 
internal data structures of the query to transform these 
structures into equivalent, but more efficient 
representations.  The rules can be based upon 
mathematical models of the relational algebra 
expression and tree (heuristics), upon cost estimates of 
different algorithms applied to operations or upon the 
semantics within the query and the relations it involves.  
Selecting the proper rules to apply, when to apply them 
and how they are applied is the function of the query 
optimization engine. 

3.3 Evaluating the Query 

The final step in processing a query is the evaluation 
phase.  The best evaluation plan candidate generated by 
the optimization engine is selected and then executed.  
Note that there can exist multiple methods of executing 
a query.  Besides processing a query in a simple 
sequential manner, some of a query’s individual 
operations can be processed in parallel—either as 
independent processes or as interdependent pipelines of 
processes or threads.  Regardless of the method chosen, 
the actual results should be same. 

vehicles make = “Camaro” “Ford” 
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4. QUERY METRICS: COST 
The execution time of a query depends on the resources 
needed to perform the needed operations: disk 
accesses, CPU cycles, RAM and, in the case of parallel 
and distributed systems , thread and process 
communication (which will not be considered in this 
paper).  Since data transfer to/from disks is 
substantially slower than memory-based transfers , the 
disk accesses usually represent an overwhelming 
majority of the total cost—particularly for very large 
databases that cannot be pre-loaded into memory.  
With today’s computers, the CPU cost also can be 
insignificant compared to disk access for many 
operations. 

The cost to access a disk is usually measured in terms 
of the number of blocks transferred from and to a disk, 
which will be the unit of measure referred to in the 
remainder of this paper. 

5. THE ROLE OF INDEXES 
The utilization of indexes can dramatically reduce the 
execution time of various operations such as select and 
join.  Let us review some of the types of index file 
structures and the roles they play in reducing execution 
time and overhead: 

Dense Index: Data-file is ordered by the search key and 
every search key value has a separate index record.  
This structure requires only a single seek to find the 
first occurrence of a set of contiguous records with the 
desired search value. 

Sparse Index:  Data-file is ordered by the index search 
key and only some of the search key values have 
corresponding index records.  Each index record’s 
data-file pointer points to the first data-file record with 
the search key value.  While this structure can be less 
efficient (in terms of number of disk accesses) than a 
dense index to find the desired records, it requires less 
storage space and less overhead during insertion and 
deletion operations. 

Primary Index:  The data file is ordered by the attribute 
that is also the search key in the index file.   Primary 
indices can be dense or sparse.  This is also referred to 
as an Index-Sequential File [5].  For scanning through 
a relation’s records in sequential order by a key value, 
this is one of the fastest and more efficient structures —
locating a record has a cost of 1 seek, and the 
contiguous makeup of the records in sorted order 

minimizes the number of blocks that have to be read.  
However, after large numbers of insertions and 
deletions, the performance can degrade quite quickly, 
and the only way to restore the performance is to 
perform a reorganization. 

Secondary Index:  The data file is ordered by an 
attribute that is different from the search key in the 
index file.  Secondary indices must be dense. 

Multi-Level Index:  An index structure consisting of 2 
or more tiers of records where an upper tier’s records 
point to associated index records of the tier below.  The 
bottom tier’s index records contain the pointers to the 
data-file records.  Multi-level indices can be used, for 
instance, to reduce the number of disk block reads 
needed during a binary search. 

Clustering Index:  A two-level index structure where 
the records in the first level contain the clustering field 
value in one field and a second field pointing to a block 
[of 2nd level records] in the second level.  The records 
in the second level have one field that points to an 
actual data file record or to another 2nd level block. 

B+-tree Index:  Multi-level index with a balanced-tree 
structure.  Finding a search key value in a B+-tree is 
proportional to the height of the tree—maximum 
number of seeks required is  )lg( height .  While 

this, on average, is more than a single-level, dense 
index that requires only one seek, the B+-tree structure 
has a distinct advantage in that it  does not require 
reorganization—it is  self-optimizing because the tree is 
kept balanced during insertions and deletions.  Many 
mission-critical applications require high performance 
with near-100% uptime, which cannot be achieved 
with structures requiring reorganization.  The leaves of 
the B+-tree are used to reorganize the data file. 

6. QUERY ALGORITHMS 
Queries are ultimately reduced to a number of file scan 
operations on the underlying physical file structures.  
For each relational operation, there can exist several 
different access paths to the particular records needed.  
The query execution engine can have a multitude of 
specialized algorithms designed to process particular 
relational operation and access path combinations.  We 
will look at some examples of algorithms for both the 
select and join operations. 
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6.1 Selection Algorithms  
The Select operation must search through the data files 
for records meeting the selection criteria.  The 
following are some examples of simple (one attribute) 
selection algorithms [13]: 

S1. Linear search: Every record from the file is read 
and compared to the selection criteria.   The 
execution cost for searching on a non-key attribute 
is br, where br is the number of blocks in the file  
representing relation r.  On a key attribute, the 
average cost is br / 2, with a worst case of br. 

S2. Binary search on primary key: A binary search, on 
equality, performed on a primary key attribute (file 
ordered by the key) has a worst-case cost of 

 )lg( rb .  This can be significantly more efficient 

than the linear search, particularly for a large 
number of records. 

S3. Search using a primary index on equality: With a 
B+-tree index, an equality comparison on a key 
attribute will have a worst-case cost of the height 
of the tree (in the index file) plus one to retrieve 
the record from the data file.  An equality 
comparison on a non-key attribute will be the 
same except that multiple records may meet the 
condition, in which case, we add the number of 
blocks containing the records to the cost. 

S4. Search using a primary index on comparison: 
When the comparison operators ( ≥>≤< ,,, ) are 
used to retrieve multiple records from a file sorted 
by the search attribute, the first record satisfying 
the condition is located and the total blocks before 
( ≤<, ) or after ( ≥>, ) is added to the cost of 
locating the first record. 

S5. Search using a secondary index on equality: 
Retrieve one record with an equality comparison 
on a key attribute; or retrieve a set of records on a 
non-key attribute.  For a single record, the cost 
will be equal to the cost of locating the search key 
in the index file plus one for retrieving the data 
record.  For multiple records, the cost will be equal 
to the cost of locating the search key in the index 
file plus one block access for each data record 
retrieval, since the data file is not ordered on the 
search attribute. 

6.2 Join Algorithms 
Like selection, the join operation can be implemented 
in a variety of ways.  In terms of disk accesses, the join 
operations can be very expensive, so implementing and 
utilizing efficient join algorithms is critical in 
minimizing a query’s execution time.  The following 
are 4 well-known types of join algorithms: 

J1. Nested-Loop Join:  This algorithm consists of a 
inner for loop nested within an outer for loop.  To 
illustrate this algorithm, we will use the following 
notations: 

r, s Relations r and s 
tr Tuple (record) in relation r 
ts Tuple (record) in relation s 
nr Number of records in relation r 
ns Number of records in re lation s 
br Number of blocks with records in relation r 
bs Number of blocks with records in relation s 

Here is a sample pseudo-code listing for joining 
the two relations r and s utilizing the nested-for 
loop [12]: 

for each tuple tr in r 
 for each tuple ts in s 
  if join condition is true for (tr, tr) 
   add tr+ts to the result 

Each record in the outer relation r is scanned once, 
and each record in the inner relation s is  scanned 
nr. times, resulting in nr* ns total record scans.  If 
only one block of each relation can fit into 
memory, then the cost (number of block accesses ) 
is nr * bs + br [12].  If all blocks in both relations 
can fit into memory, then the cost is br + bs [12].  If 
all of the blocks in relation s (the inner relation) 
can fit into memory, then the cost is identical to 
both relations fitting in memory: br + bs [12].  
Thus, if one of the relations can fit entirely in 
memory, then it is advantageous for the query 
optimizer to select that relation as the inner one. 

Even though the worst case for the nested-loop 
join is quite expensive, it has an advantage in that 
it does not impose any restrictions on the access 
paths for either relation, regardless of the join 
condition. 

J2. Index Nested-Loop Join:  This algorithm is the 
same as the Nested-Loop Join, except an index file 
on the inner relation’s (s) join attribute is used 
versus a data-file scan on s—each index lookup in 
the inner loop is essentially an equality selection 
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on s utilizing one of the selection algorithms (ex. 
S2, S3, S5).  Let c be the cost for the lookup, then 
the worst-case cost for joining r and s is br + nr * c 
[12]. 

J3. Sort-Merge Join: This algorithm can be used to 
perform natural joins and equi-joins and requires 
that each relation (r and s) be sorted by the 
common attributes between them (R ∩ S) [12].   
The details for how this algorithm works can be 
found in [5] and [12] and will not be presented 
here.  However, it is notable to point out that each 
record in r and s is only scanned once, thus 
producing a worst and best-case cost of br + bs 
[12].  Variations of the Sort-Merge Join algorithm 
are used, for instance, when the data files are in 
un-sorted order, but there exist secondary indices 
for the two relations. 

J4. Hash Join: Like the sort-merge join, the hash join 
algorithm can be used to perform natural joins and 
equi-joins [12].  The hash join utilizes two hash 
table file  structures  (one for each relation) to 
partition each relation’s records into sets 
containing identical hash values on the join 
attributes.  Each relation is scanned and its 
corresponding hash table on the join attribute 
values is built.  Note that collisions may occur, 
resulting in some of the partitions containing 
different sets records with matching join attribute 
values.  After the two hash tables are built , for 
each matching partition in the hash tables, an in-
memory hash index of the smaller relation’s (the 
build relation) records is built and a nested-loop 
join is performed against the corresponding 
records in the other relation, writing out to the 
result for each join. 

 Note that the above works only if the required 
amount of memory is available to hold the hash 
index and the number records in any partition of 
the build relation.  If not, then a process known as 
recursive partitioning is performed—see [5] or 
[12] for details. 

 The cost for the hash join, without recursive 
partitioning, is 3(br + bs) + 4nh where nh is the 
number of partitions in the hash table [12].  The 
cost for the hash join with recursive partitioning is 

  srsMsr bbbbb ++−+ − 1)(log)(2 1
 where M is the 

number of memory blocks used. 

 

7. QUERY OPTIMIZATION 
The function of a DBMS’ query optimization engine is 
to find an evaluation plan that reduces the overall 
execution cost of a query.  We have seen in the 
previous sections that the costs for performing 
particular operations such as select and join can vary 
quite dramatically.  As an example, consider 2 relations 
r and s, with the following characteristics: 

10,000 = nr = Number of tuples in r 
1,000 = ns = Number of tuples in s 
1,000 = br = Number of blocks with tuples in r 
100 = bs = Number of blocks with tuples in s 

Selecting a single record from r on a non-key attribute 
can have, a cost of   10)lg( =rb  (binary search) or a 

cost of 000,52/ =rb  (linear search).  Joining r and s 

can have a cost of 000,001,1=+∗ rsr bbn (nested-loop 

join)[13] or a cost of 000,734)(3 =++ hsr nbb (hash-

join where nh = 10,000)[13]. 

Notice that the cost difference between the 2 selects 
differs by a factor of 500, and the 2 joins by a factor of 
~14.  Clearly, selecting lower-cost methods can result 
in substantially better performance.  This process of 
selecting a lower-cost mechanism is known as cost-
based optimization.  Other strategies for lowering the 
execution time of queries include heuristic-based 
optimization and semantic-based optimization. 

In heuristic-based optimization, mathematical rules are 
applied to the components of the query to generate an 
evaluation plan that, theoretically, will result in a lower 
execution time.  Typically, these components are the 
data elements within an internal data structure, such as 
a query tree, that the query parser has generated from a 
higher level representation of the query (i.e. SQL). 

The internal nodes of a query tree represent specific 
relational algebra operations to be performed on the 
relation(s) passed into them from the child node(s) 
directly below.  The leaves of the tree are the 
relation(s).  The tree is evaluated from the bottom up, 
creating a specific evaluation plan.  In section 3, we 
saw that a query’s query tree can be constructed in 
multiple, equivalent ways.  In many instances, there 
will be at least one of these equivalent trees that 
produces a faster, “optimized” execution plan.  Section 
7.2 will illustrate this concept. 
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Another way of optimizing a query is semantic-based 
query optimization.  In many cases, the data within and 
between relations contain “rules” and patterns that are 
based upon “real-world” situations that the DBMS does 
not “know” about.  For example, vehicles like the 
Delorean were not made after 1990, so a query like 
“Retrieve all vehicles with make equal to Delorean and 
year > 2000” will produce zero records.  Injecting these 
types of semantic rules into a DBMS can thus further 
enhance a query’s execution time. 

7.1 Statistics of Expression Results 

In order to estimate the various costs of query 
operations, the query optimizer utilizes a fairly 
extensive amount of metadata associated with the 
relations and their corresponding file structures.  These 
data are collected during and after various database 
operations (such as queries) and stored in the DBMS 
catalog.  These data include [5, 12]: 

nr Number of records (tuples) in a relation r.  
Knowing the number of records in a relation is a 
critical piece of data utilized in nearly all cost 
estimations of operations. 

fr Blocking factor (number of records per block) 
for relation r.  This data is used in calculating 
the blocking factor, and is also useful in 
determining the proper size and number of 
memory buffers. 

br Number of blocks in relation r’s data-file.  Also 
a critical and commonly used datum, br is 
calculated value equal to nr / br. 

lr Length of a record, in bytes, in relation r.  The 
record size is another important data item used 
in many operations, particularly when the values 
differ significantly for two relations involved in 
an operation.  For variable -length records, the 
actual length value used—either the average or 
the maximum—depends on the type of operation 
to be performed. 

dAr Number of distinct values of attribute A in 
relation r.  This value is important in calculating 
the number of resulting records for a projection 
operation and for aggregate functions like sum, 
count and average. 

x Number of levels in a multi-level index (B+-tree, 
cluster index, etc.).  This data item is used in 
estimating the number of block accesses  needed 
in various search algorithms .  Note that for a 
B+-tree, x will be equal to the height of the tree. 

sA Selection cardinality of an attribute.  This is a 
calculated value equal to nr / dAr.  When A is a 

key attribute, sA = 1.  The selection cardinality 
allows the query optimizer to determine the 
“average number of records that will satisfy an 
equality selection condition on that attribute”[5]. 

The query optimizer also depends on other important 
data such as the ordering of the data file, the type of 
index structures available and the attributes involved in 
these file organization structures.  Knowing whether 
certain access structures exist allows the query 
optimizer to select the appropriate algorithm(s) to use 
for particular operations. 

7.2 Expression and Tree Transformations  
After a high-level query (i.e. SQL statement) has been 
parsed into an equivalent relational algebra expression, 
the query optimizer can perform heuristic rules on the 
expression and tree to transform the expression and 
tree into equivalent, but optimized forms.  As an 
example, consider the following SQL query: 

select first_name, last_name  
from drivers, vehicles 
where make = “Chevrolet” and owned_by = 

driver_id 

A corresponding relational algebra expression is: 
π first_name,last_name((σ make = “Chevrolet” (σ owned_by = driver_id 

(vehicles X drivers))) 

And the corresponding canonical query tree for the 
relational algebra expression: 

 
Suppose the vehicles and drivers relations both have 
10,000 records each and the number of Chevrolet 
vehicles is 5,000.  Note that the Cartesian product 
resulting in 10,000,000 records can be reduced by 50% 
if the σ make = “Chevrolet”.operation is performed first.  We 
can also combine the σ owned_by = driver_id and Cartesian 
product operations into a more efficient join operation, 

π first_name,last_name 

σ make = “Chevrolet” 

σ owned_by = driver_id  

X 

vehicles drivers 
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as well as eliminating any unneeded columns before 
the expensive join is performed.  The diagram below 
shows this better, “optimized” version of the tree: 

 

In relational algebra, there are several definitions and 
theorems the query optimizer can use to transform the 
query.  For instance, the definition of equivalent 
relations states that the set of attributes (domain) of 
each relation must be the same—because they are sets, 
the order does not matter.  Here is a partial list of 
relational algebra theorems from the Elmasri/Navathe 
textbook [5]: 

1. Cascade of σ : A select with conjunctive 
conditions on the attribute list is equivalent to a 
cascade of selects upon selects: 

))...))((...(()(
2121 ... RR

nn AAAAAA σσσσ ≡∧∧∧  

2. Commutativity of σ : The select operation is 
commutative: ))(())((

1221
RR AAAA σσσσ ≡  

3. Cascade of π : A cascade of project operations is 
equivalent to the last project operation of the 
cascade: 

)())...))((...((
121

RR AListAListAListAList n
ππππ ≡  

4. Commuting σ with π : Given a π ’s and σ ’s 
attribute list of A1, A2,…, An, the π  and σ  
operations can be commuted: 

))(())(( ,...,,,...,, 2121
RR

nn AAAccAAA πσσπ ≡  

5. Communativity of  or X: The join and Cartesian 
product operations are communative: 
R  S ≡  S  R and R X S ≡  S X R 

6. Commuting σ  with  or X: Select can be 
commuted with join (or Cartesian product) as 

follows: 
a. If all of the attributes in the select’s condition 

are in relation R then cσ (R  S) ≡ ( cσ (R) )  S 

b. Given select the condition c composed of 
conditions c1 and c2, and c1 contains only 
attributes from R, and c2 contains only attributes 

from S, then cσ (R  S) ≡ ( 1cσ (R) )  ( 2cσ (S)) 

7. Commutativity of set operations ( −∩∪ ,, ): 
Union and intersection operations are 
commutative; but the difference operation is not: 

RSSRRSSRRSSR −≠−∩≡∩∪≡∪ ,,  

8. Associativity of , X, ∪ and ∩ : All four of these 
operations are individually associative.  Let θ be 
any one of these operators, then: 
(R θ S) θ T ≡ R θ (S θ  T) 

9. Commuting σ with set operations ( −∩∪ ,, ):Let 

θ be any one of the three set operators, then: 

cσ (R θ S) ≡ ( cσ (R) ) θ ( cσ (S) ) 

10. Commuting π  with ∪ : Project and union 
operations can be commuted: 

))(())(()( SRSR
ListListList AAA πππ ∪≡∪  

Using these theorems, an algorithm can be defined to 
transform the original query expression/tree created by 
the parser into a more optimized query.  A detailed 
example of such an algorithm can be found in the 
Elmasri/Navathe textbook [5]—some of the key 
concepts can be summarized as follows: 

1. One primary objective is to reduce the size of the 
intermediate relations, both in terms of bytes per 
record as well as number of records, as soon as 
possible so that subsequent operations will have 
less data to process and thus execute quicker. 

2. Operations, such as conjunctive selections, should 
be broken down into their equivalent set of smaller 
units to allow the individual units to be moved into 
“better” positions within the query tree. 

3. Combine Cartesian products with corresponding 
selects to create joins—utilizing optimized join 
algorithms  like the sort-merge join and hash join 
can be orders of magnitude more efficient. 

4. Move selects and projects as far down the tree as 
possible, as these operations will produce smaller 
intermediate relations that can be processed more 
quickly by the operations above. 

π first_name,last_name 

π make,owned_by 

σ make = “Chevrolet” 

vehicles 

drivers 

π first_name,last_name 
,    driver_id  

owned_by = driver_id  
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7.3 Choice of Evaluation Plans  
The query optimization engine typically generates a set 
of candidate evaluation plans.  Some will, in heuristic 
theory, produce a faster, more efficient execution.  
Others may, by prior historical results, be more 
efficient than the theoretical models —this can very 
well be the case for queries dependent on the semantic 
nature of the data to be processed.  Still others can be 
more efficient due to “outside agencies” such as 
network congestion, competing applications on the 
same CPU, etc.  Thus, a plethora of data can exist from 
which the query execution engine can probe for the 
best evaluation plan to execute at any given time. 

10. CONCLUSION 

One of the most critical functional requirements of a 
DBMS is its ability to process queries in a timely 
manner.  This is particularly true for very large, 
mission critical applications such as weather 
forecasting, banking systems and aeronautical 
applications, which can contain millions and even 
trillions of records.  The need for faster and faster, 
“immediate” results never ceases.  Thus, a great deal of 
research and resources is spent on creating smarter, 
highly efficient query optimization engines.  Some of 
the basic techniques of query processing and 
optimization have been presented in this paper.  Other, 
more advanced topics are the subjects of many research 
papers and projects.  Some examples include XML 
query processing [3, 11], query containment [2], 
utilizing materialized views [13], sequence queries [9, 
10] and many others. 

11. EXTENDING MY MINI-DB ENGINE 

My primary goal in enhancing my “mini” database 
engine application is to speed up the processing of 
queries.  Before we get in the details behind the 
implementation plan for accomplishing this goal, let’s 
look at what data structures, file structures and 
algorithms are currently in place.  Only the most 
significant ones will be discussed. 

11.1 Current Implementation 

File Structures 
• Record-number-ordered index.  This index is 

“low-level” and is not “seen” by the relational 
algebra methods (i.e. select, project, etc.).  It’s 
purpose is to provide a primary access 
mechanism to the data-file records.  It is also the 

“owner” of the state of each data-file record (i.e. 
active or deleted). 

• Hash-based, unordered, single-level, secondary 
index.  This index structure provides single-seek 
access to data-file records.  Because it is 
unordered, only equality-based comparisons can 
be utilized in locating records. 

• Sequential, unordered data file.  Due to the fact 
that the current indices are unordered, this file 
will not be able to be put into a physically sorted 
format, even after a reorganization. 

• Meta-Data file: This file stores all of the 
information, in standard XML-formatted text, 
pertaining to its corresponding relation.  This 
includes: table name; number of fields 
(attributes); list of fields with their name, size 
and type; primary key field identifier; foreign 
key identifiers; list of indices with the index 
name, index field name and type of index 
(unique/key or clustered/secondary).  Also, the 
access algorithm for this file is flexible enough 
to handle any additional data (singular or 
nested). 

Data Structures 
• Each of the file structures has a corresponding 

class with methods that handle the file access 
(open, close, rename, etc.) as well as the 
reading, updating, inserting and deleting of 
records. 

• Wrapping around the file structure classes is the 
DBRelation class with methods that handle the 
creation, opening and updating of the associated 
files.  This class also has high-level methods one 
would associate with single-relation operations 
such as: insert, delete, update and search. 

• Wrapping around the DBRelation class is the 
Mini_Rel_Algebra class with methods that 
perform the following relational algebra 
operations: select, project, Cartesian product, 
union, intersection difference and join. 

Algorithms  
• DBRelation.Search()  This method performs the 

actual search for record(s) in a given relation.  It 
can accept multiple search fields, conditions and 
search values for performing the equivalent of a 
conjunctive select.  The search values can be 
either constant string values or references to a 
particular field’s value.  The search algorithm 
itself can operate in two ways: 1. Linear search, 
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where every record in the relation’s data file is 
scanned and compared to the condition.  2. 
Index lookup, by equality, on an attribute in the 
condition list.  The index lookup is essentially 
equivalent to the S5 search algorithm detailed in 
section 6.1.  Note that if the record is found 
using the index, then the remaining search 
conditions, if any, are evaluated for the current 
record.  If the record is not found, then the 
condition with the indexed attribute is false, and 
the remaining conditions do not have to be 
evaluated. 

• Mini_Rel_Algebra.Join()  The current 
implementation of the join operation is 
performed by executing a select operation 
followed by a Cartesian product operation. 

11.2 Proposed Enhancements 

There are 6 main query execution speed enhancements 
I plan on imple menting: 

1. Implement a “record generator” so that a large 
number (>100,000) of records can be populated 
into the database.  This will allow performance 
comparisons to be made between the current and 
new implementations. 

2. Replace the current join algorithm with the J4 hash 
join algorithm discussed in section 6.2.  I expect a 
very significant boost in performance, and, so that 
speed comparisons can be made, I will keep the 
old join method (rename it to OldJoin).  The 
syntax of the new Join() call will be the same: 

Join(string  relationName1, string  
relationName2, string  joinField1, string  
joinField2) 

3. Create a new HJIndex class to handle the hash 
table file structure that will be needed by the new 
hash join algorithm.  Since most all of the current 
DBIndex class’ existing access methods (add, 
delete, modify) will most likely not need any 
changes (even if they do, the changes will be 
minor), the HJIndex will be inherited from the 
DBIndex class. 

4. Finish the implementation of the cluster index.  
This new index structure will allow multiple 
records to be retrieved utilizing the concepts of the 
S5 search algorithm in section 6.1. 

5. Modify the DBRelation.Search() method to utilize 
the new cluster index. 

6. Create a new DBQuery class.  This will allow the 
user to build and execute a query consisting of a 
sequence of relational operations.  This class will 
be a simplified version in that it will only handle a 
sequential list of operations.  If time permits, I 
may create a “true” query tree structure.  The 
following instance variables and methods will be 
implemented: 

ArrayList opList : Instance variable holding the 
sequential list of relational operations. 

DBOperation opObj : Object holding a relational 
operation.  DBOperation will either be a 
structure or class that holds all of the 
possible parameters involved in the various 
types of relational operations. 

DBQuery(string queryName)  The constructor 
method. 

bool AddOp(string opName, string param1, 
string param2, …) Adds an operation object 
to the opList array.  Will be overloaded to 
handle the various parameter lists of the 
different relational operations.  For instance, 
a project operation needs three parameters: 
string opName, string relationName, string 
attributeList. 

void Clear()  Clears the current query—
opList.Clear() 

string Execute()  Executes the current query.  
The returned string will be the name of the 
resulting relation. 

string ToString()  Returns a multi-line string of 
the current list of operations and their 
parameters. 

11.3 Query Performance Comparisons  
Time permitting, I will build a test database consisting 
of several thousand records.  This test database will 
then be used to time the execution speeds of “identical” 
queries in the existing and new version of the Mini 
DBEngine application.  The test results will be 
compiled into a comparison table and included in the 
report for the final version of the application. 



Introduction to Query Processing and Optimization  page 11 of 11 

REFERENCES 
[1] Henk Ernst Blok, Djoerd Hiemstra and Sunil 

Choenni, Franciska de Jong, Henk M. 
Blanken and Peter M.G. Apers.  Predicting the 
cost-quality trade-off for information retrieval 
queries: Facilitatiing database design and 
query optimization.  Proceedings of the tenth 
international conference on Information and 
knowledge management, October 2001, Pages 
207-214. 

[2] D. Calvanese, G. De Giacomo, M. Lenzerini 
and M. Y. Vardi.  Reasoning on Regular Path 
Queries.  ACM SIGMOD Record , Vol. 32, No. 
4, December 2003. 

[3] Andrew Eisenberg and Jim Melton.  
Advancements in SQL/XML.  ACM SIGMOD 
Record, Vol. 33, No. 3, September 2004. 

[4] Andrew Eis enberg and Jim Melton.  An Early 
Look at XQuery API for Java™ (XQJ).  ACM 
SIGMOD Record, Vol. 33, No. 2, June 2004. 

[5] Ramez Elmasri and Shamkant B. Navathe.  
Fundamentals of Database Systems, second 
edition.  Addison-Wesley Publishing 
Company, 1994. 

[6] Donald Kossmann and Konrad Stocker.  
Iterative Dynamic Programming: A new Class 
of Query Optimization Algorithms.  ACM 
Transactions on Database Systems, Vol. 25, 
No. 1, March 2000, Pages 43-82. 

[7] Chiang Lee, Chi-Sheng Shih and Yaw-Huei 
Chen.  A Graph-theoritic model for 
optimizing queries involving methods.  The 
VLDB Journal — The International Journal 
on Very Large Data Bases, Vol. 9, Issue 4, 
April 2001, Pages 327-343. 

[8] Hsiao-Fei Liu, Ya-Hui Chang and Kun-Mao 
Chao.  An Optimal Algorithm for Querying 
Tree Structures and its Applications in 
Bioinformatics.  ACM SIGMOD Record  Vol. 
33, No. 2, June 2004. 

[9] Reza Sadri, Carlo Zaniolo, Amir Zarkesh and 
Jafar Adibi.  Expressing and Optimizing 
Sequence Queries in Database Systems.  ACM 

Transactions on Database Systems, Vol. 29, 
Issue 2, June 2004, Pages 282-318. 

[10] Reza Sadri, Carlo Zaniolo, Amir Zarkesh and 
Jafar Adibi.  Optimization of Sequence 
Queries in Database Systems.  In Proceedings 
of the twentieth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database 
systems, May 2001, Pages 71-81. 

[11] Thomas Schwentick. XPath Query 
Containment.  ACM SIGMOD Record , Vol. 
33, No. 1, March 2004. 

[12] Avi Silbershatz, Hank Korth and S. 
Sudarshan.  Database System Concepts, 4th 
Edition.  McGraw-Hill, 2002. 

[13] Dimitri Theodoratos and Wugang Xu.  
Constructing Search Spaces for Materialized 
View Selection.  Proceedings of the 7th ACM 
international workshop on Data warehousing 
and OLAP, November 2004, Pages 112-121. 

[14] Jingren Zhou and Kenneth A. Ross.  Buffering 
Database Operations for Enhanced Instruction 
Cache Performance.  Proceedings of the 2004 
ACM SIGMOD international conference on 
Management of data , June 2004, Pages 
191-202. 


