
Introduction to Query Processing and Optimization page 2 of 11

Introduction to Query Processing and Optimization

Michael L. Rupley, Jr.
Indiana University at South Bend

mrupleyj@iusb.edu

ABSTRACT

All database systems must be able to respond to
requests for information from the user—i.e. process
queries. Obtaining the desired information from a
database system in a predictable and reliable fashion is
the scientific art of Query Processing . Getting these
results back in a timely manner deals with the
technique of Query Optimization . This paper will
introduce the reader to the basic concepts of query
processing and query optimization in the relational
database domain. How a database processes a query as
well as some of the algorithms and rule-sets utilized to
produce more efficient queries will also be presented.
In the last section, I will discuss the implementation
plan to extend the capabilities of my Mini-Database
Engine program to include some of the query
optimization techniques and algorithms covered in this
paper.

1. INTRODUCTION

Query processing and optimization is a fundamental, if
not critical, part of any DBMS. To be utilized
effectively, the results of queries must be available in
the timeframe needed by the submitting user—be it a
person, robotic assembly machine or even another
distinct and separate DBMS. How a DBMS processes
queries and the methods it uses to optimize their
performance are topics that will be covered in this
paper.

In certain sections of this paper, various concepts will
be illustrated with reference to an example database of
cars and drivers. Each car and driver are unique, and
each car can have 0 or more drivers, but only one
owner. A driver can own and drive multiple cars.
There are 3 relations: cars, drivers and car_driver with
the following attributes:

The vehicles relation:
Attribute Length Key?

vehicle_id 15 Yes
make 20 No
model 20 No
year 4 No

owned_by 10 No

The drivers relation:

Attribute Length Key?
driver_id 10 Yes
first_name 20 No
last_name 20 No
age 2 No

The car_driver relation:
Attribute Length Key?

cd_car_name 15 Yes*
cd_driver_id 10 Yes*

2. WHAT IS A QUERY?
A database query is the vehicle for instructing a DBMS
to update or retrieve specific data to/from the
physically stored medium. The actual updating and
retrieval of data is performed through various
“low-level” operations. Examples of such operations
for a relational DBMS can be relational algebra
operations such as project, join, select, Cartesian
product, etc. While the DBMS is designed to process
these low-level operations efficiently, it can be quite
the burden to a user to submit requests to the DBMS in
these formats. Consider the following request:

“Give me the vehicle ids of all Chevrolet Camaros
built in the year 1977.”

While this is easily understandable by a human, a
DBMS must be presented with a format it can
understand, such as this SQL statement:

select vehicle_id
from vehicles
where year = 1977

Note that this SQL statement will still need to be
translated further by the DBMS so that the
functions/methods within the DBMS program can not
only process the request, but do it in a timely manner.

Introduction to Query Processing and Optimization page 3 of 11

3. THE QUERY PROCESSOR
There are three phases [12] that a query passes through
during the DBMS’ processing of that query:

1. Parsing and translation
2. Optimization
3. Evaluation

Most queries submitted to a DBMS are in a high-level
language such as SQL. During the parsing and
translation stage, the human readable form of the query
is translated into forms usable by the DBMS. These
can be in the forms of a relational algebra expression,
query tree and query graph. Consider the following
SQL query:

select make
from vehicles
where make = “Ford”

This can be translated into either of the following
relational algebra expressions:

))((
))((

""

""

vehicles
vehicles

Fordmakemake

makeFordmake

=

=

σπ
πσ

Which can also be represented as either of the
following query trees:

 ""Fordmake=σ makeπ

 makeπ ""Fordmake=σ

 vehicles vehicles

And represented as a query graph:

After parsing and translation into a relational algebra
expression, the query is then transformed into a form,
usually a query tree or graph, that can be handled by
the optimization engine. The optimization engine then
performs various analyses on the query data,
generating a number of valid evaluation plans. From
there, it determines the most appropriate evaluation
plan to execute.

After the evaluation plan has been selected, it is passed
into the DMBS’ query-execution engine [12] (also
referred to as the runtime database processor [5]),
where the plan is executed and the results are returned.

3.1 Parsing and Translating the Query

The first step in processing a query submitted to a
DBMS is to convert the query into a form usable by the
query processing engine. High-level query languages
such as SQL represent a query as a string, or sequence,
of characters. Certain sequences of characters
represent various types of tokens such as keywords,
operators, operands, literal strings, etc. Like all
languages, there are rules (syntax and grammar) that
govern how the tokens can be combined into
understandable (i.e. valid) statements.

The primary job of the parser is to extract the tokens
from the raw string of characters and translate them
into the corresponding internal data elements (i.e.
relational algebra operations and operands) and
structures (i.e. query tree, query graph).

The last job of the parser is to verify the validity and
syntax of the original query string.

3.2 Optimizing the Query

In this stage, the query processor applies rules to the
internal data structures of the query to transform these
structures into equivalent, but more efficient
representations. The rules can be based upon
mathematical models of the relational algebra
expression and tree (heuristics), upon cost estimates of
different algorithms applied to operations or upon the
semantics within the query and the relations it involves.
Selecting the proper rules to apply, when to apply them
and how they are applied is the function of the query
optimization engine.

3.3 Evaluating the Query

The final step in processing a query is the evaluation
phase. The best evaluation plan candidate generated by
the optimization engine is selected and then executed.
Note that there can exist multiple methods of executing
a query. Besides processing a query in a simple
sequential manner, some of a query’s individual
operations can be processed in parallel—either as
independent processes or as interdependent pipelines of
processes or threads. Regardless of the method chosen,
the actual results should be same.

vehicles make = “Camaro” “Ford”

Introduction to Query Processing and Optimization page 4 of 11

4. QUERY METRICS: COST
The execution time of a query depends on the resources
needed to perform the needed operations: disk
accesses, CPU cycles, RAM and, in the case of parallel
and distributed systems , thread and process
communication (which will not be considered in this
paper). Since data transfer to/from disks is
substantially slower than memory-based transfers , the
disk accesses usually represent an overwhelming
majority of the total cost—particularly for very large
databases that cannot be pre-loaded into memory.
With today’s computers, the CPU cost also can be
insignificant compared to disk access for many
operations.

The cost to access a disk is usually measured in terms
of the number of blocks transferred from and to a disk,
which will be the unit of measure referred to in the
remainder of this paper.

5. THE ROLE OF INDEXES
The utilization of indexes can dramatically reduce the
execution time of various operations such as select and
join. Let us review some of the types of index file
structures and the roles they play in reducing execution
time and overhead:

Dense Index: Data-file is ordered by the search key and
every search key value has a separate index record.
This structure requires only a single seek to find the
first occurrence of a set of contiguous records with the
desired search value.

Sparse Index: Data-file is ordered by the index search
key and only some of the search key values have
corresponding index records. Each index record’s
data-file pointer points to the first data-file record with
the search key value. While this structure can be less
efficient (in terms of number of disk accesses) than a
dense index to find the desired records, it requires less
storage space and less overhead during insertion and
deletion operations.

Primary Index: The data file is ordered by the attribute
that is also the search key in the index file. Primary
indices can be dense or sparse. This is also referred to
as an Index-Sequential File [5]. For scanning through
a relation’s records in sequential order by a key value,
this is one of the fastest and more efficient structures —
locating a record has a cost of 1 seek, and the
contiguous makeup of the records in sorted order

minimizes the number of blocks that have to be read.
However, after large numbers of insertions and
deletions, the performance can degrade quite quickly,
and the only way to restore the performance is to
perform a reorganization.

Secondary Index: The data file is ordered by an
attribute that is different from the search key in the
index file. Secondary indices must be dense.

Multi-Level Index: An index structure consisting of 2
or more tiers of records where an upper tier’s records
point to associated index records of the tier below. The
bottom tier’s index records contain the pointers to the
data-file records. Multi-level indices can be used, for
instance, to reduce the number of disk block reads
needed during a binary search.

Clustering Index: A two-level index structure where
the records in the first level contain the clustering field
value in one field and a second field pointing to a block
[of 2nd level records] in the second level. The records
in the second level have one field that points to an
actual data file record or to another 2nd level block.

B+-tree Index: Multi-level index with a balanced-tree
structure. Finding a search key value in a B+-tree is
proportional to the height of the tree—maximum
number of seeks required is)lg(height . While

this, on average, is more than a single-level, dense
index that requires only one seek, the B+-tree structure
has a distinct advantage in that it does not require
reorganization—it is self-optimizing because the tree is
kept balanced during insertions and deletions. Many
mission-critical applications require high performance
with near-100% uptime, which cannot be achieved
with structures requiring reorganization. The leaves of
the B+-tree are used to reorganize the data file.

6. QUERY ALGORITHMS
Queries are ultimately reduced to a number of file scan
operations on the underlying physical file structures.
For each relational operation, there can exist several
different access paths to the particular records needed.
The query execution engine can have a multitude of
specialized algorithms designed to process particular
relational operation and access path combinations. We
will look at some examples of algorithms for both the
select and join operations.

Introduction to Query Processing and Optimization page 5 of 11

6.1 Selection Algorithms
The Select operation must search through the data files
for records meeting the selection criteria. The
following are some examples of simple (one attribute)
selection algorithms [13]:

S1. Linear search: Every record from the file is read
and compared to the selection criteria. The
execution cost for searching on a non-key attribute
is br, where br is the number of blocks in the file
representing relation r. On a key attribute, the
average cost is br / 2, with a worst case of br.

S2. Binary search on primary key: A binary search, on
equality, performed on a primary key attribute (file
ordered by the key) has a worst-case cost of

)lg(rb . This can be significantly more efficient

than the linear search, particularly for a large
number of records.

S3. Search using a primary index on equality: With a
B+-tree index, an equality comparison on a key
attribute will have a worst-case cost of the height
of the tree (in the index file) plus one to retrieve
the record from the data file. An equality
comparison on a non-key attribute will be the
same except that multiple records may meet the
condition, in which case, we add the number of
blocks containing the records to the cost.

S4. Search using a primary index on comparison:
When the comparison operators (≥>≤< ,,,) are
used to retrieve multiple records from a file sorted
by the search attribute, the first record satisfying
the condition is located and the total blocks before
(≤<,) or after (≥>,) is added to the cost of
locating the first record.

S5. Search using a secondary index on equality:
Retrieve one record with an equality comparison
on a key attribute; or retrieve a set of records on a
non-key attribute. For a single record, the cost
will be equal to the cost of locating the search key
in the index file plus one for retrieving the data
record. For multiple records, the cost will be equal
to the cost of locating the search key in the index
file plus one block access for each data record
retrieval, since the data file is not ordered on the
search attribute.

6.2 Join Algorithms
Like selection, the join operation can be implemented
in a variety of ways. In terms of disk accesses, the join
operations can be very expensive, so implementing and
utilizing efficient join algorithms is critical in
minimizing a query’s execution time. The following
are 4 well-known types of join algorithms:

J1. Nested-Loop Join: This algorithm consists of a
inner for loop nested within an outer for loop. To
illustrate this algorithm, we will use the following
notations:

r, s Relations r and s
tr Tuple (record) in relation r
ts Tuple (record) in relation s
nr Number of records in relation r
ns Number of records in re lation s
br Number of blocks with records in relation r
bs Number of blocks with records in relation s

Here is a sample pseudo-code listing for joining
the two relations r and s utilizing the nested-for
loop [12]:

for each tuple tr in r
 for each tuple ts in s
 if join condition is true for (tr, tr)
 add tr+ts to the result

Each record in the outer relation r is scanned once,
and each record in the inner relation s is scanned
nr. times, resulting in nr* ns total record scans. If
only one block of each relation can fit into
memory, then the cost (number of block accesses)
is nr * bs + br [12]. If all blocks in both relations
can fit into memory, then the cost is br + bs [12]. If
all of the blocks in relation s (the inner relation)
can fit into memory, then the cost is identical to
both relations fitting in memory: br + bs [12].
Thus, if one of the relations can fit entirely in
memory, then it is advantageous for the query
optimizer to select that relation as the inner one.

Even though the worst case for the nested-loop
join is quite expensive, it has an advantage in that
it does not impose any restrictions on the access
paths for either relation, regardless of the join
condition.

J2. Index Nested-Loop Join: This algorithm is the
same as the Nested-Loop Join, except an index file
on the inner relation’s (s) join attribute is used
versus a data-file scan on s—each index lookup in
the inner loop is essentially an equality selection

Introduction to Query Processing and Optimization page 6 of 11

on s utilizing one of the selection algorithms (ex.
S2, S3, S5). Let c be the cost for the lookup, then
the worst-case cost for joining r and s is br + nr * c
[12].

J3. Sort-Merge Join: This algorithm can be used to
perform natural joins and equi-joins and requires
that each relation (r and s) be sorted by the
common attributes between them (R ∩ S) [12].
The details for how this algorithm works can be
found in [5] and [12] and will not be presented
here. However, it is notable to point out that each
record in r and s is only scanned once, thus
producing a worst and best-case cost of br + bs
[12]. Variations of the Sort-Merge Join algorithm
are used, for instance, when the data files are in
un-sorted order, but there exist secondary indices
for the two relations.

J4. Hash Join: Like the sort-merge join, the hash join
algorithm can be used to perform natural joins and
equi-joins [12]. The hash join utilizes two hash
table file structures (one for each relation) to
partition each relation’s records into sets
containing identical hash values on the join
attributes. Each relation is scanned and its
corresponding hash table on the join attribute
values is built. Note that collisions may occur,
resulting in some of the partitions containing
different sets records with matching join attribute
values. After the two hash tables are built , for
each matching partition in the hash tables, an in-
memory hash index of the smaller relation’s (the
build relation) records is built and a nested-loop
join is performed against the corresponding
records in the other relation, writing out to the
result for each join.

 Note that the above works only if the required
amount of memory is available to hold the hash
index and the number records in any partition of
the build relation. If not, then a process known as
recursive partitioning is performed—see [5] or
[12] for details.

 The cost for the hash join, without recursive
partitioning, is 3(br + bs) + 4nh where nh is the
number of partitions in the hash table [12]. The
cost for the hash join with recursive partitioning is

 srsMsr bbbbb ++−+ − 1)(log)(2 1
 where M is the

number of memory blocks used.

7. QUERY OPTIMIZATION
The function of a DBMS’ query optimization engine is
to find an evaluation plan that reduces the overall
execution cost of a query. We have seen in the
previous sections that the costs for performing
particular operations such as select and join can vary
quite dramatically. As an example, consider 2 relations
r and s, with the following characteristics:

10,000 = nr = Number of tuples in r
1,000 = ns = Number of tuples in s
1,000 = br = Number of blocks with tuples in r
100 = bs = Number of blocks with tuples in s

Selecting a single record from r on a non-key attribute
can have, a cost of 10)lg(=rb (binary search) or a

cost of 000,52/ =rb (linear search). Joining r and s

can have a cost of 000,001,1=+∗ rsr bbn (nested-loop

join)[13] or a cost of 000,734)(3 =++ hsr nbb (hash-

join where nh = 10,000)[13].

Notice that the cost difference between the 2 selects
differs by a factor of 500, and the 2 joins by a factor of
~14. Clearly, selecting lower-cost methods can result
in substantially better performance. This process of
selecting a lower-cost mechanism is known as cost-
based optimization. Other strategies for lowering the
execution time of queries include heuristic-based
optimization and semantic-based optimization.

In heuristic-based optimization, mathematical rules are
applied to the components of the query to generate an
evaluation plan that, theoretically, will result in a lower
execution time. Typically, these components are the
data elements within an internal data structure, such as
a query tree, that the query parser has generated from a
higher level representation of the query (i.e. SQL).

The internal nodes of a query tree represent specific
relational algebra operations to be performed on the
relation(s) passed into them from the child node(s)
directly below. The leaves of the tree are the
relation(s). The tree is evaluated from the bottom up,
creating a specific evaluation plan. In section 3, we
saw that a query’s query tree can be constructed in
multiple, equivalent ways. In many instances, there
will be at least one of these equivalent trees that
produces a faster, “optimized” execution plan. Section
7.2 will illustrate this concept.

Introduction to Query Processing and Optimization page 7 of 11

Another way of optimizing a query is semantic-based
query optimization. In many cases, the data within and
between relations contain “rules” and patterns that are
based upon “real-world” situations that the DBMS does
not “know” about. For example, vehicles like the
Delorean were not made after 1990, so a query like
“Retrieve all vehicles with make equal to Delorean and
year > 2000” will produce zero records. Injecting these
types of semantic rules into a DBMS can thus further
enhance a query’s execution time.

7.1 Statistics of Expression Results

In order to estimate the various costs of query
operations, the query optimizer utilizes a fairly
extensive amount of metadata associated with the
relations and their corresponding file structures. These
data are collected during and after various database
operations (such as queries) and stored in the DBMS
catalog. These data include [5, 12]:

nr Number of records (tuples) in a relation r.
Knowing the number of records in a relation is a
critical piece of data utilized in nearly all cost
estimations of operations.

fr Blocking factor (number of records per block)
for relation r. This data is used in calculating
the blocking factor, and is also useful in
determining the proper size and number of
memory buffers.

br Number of blocks in relation r’s data-file. Also
a critical and commonly used datum, br is
calculated value equal to nr / br.

lr Length of a record, in bytes, in relation r. The
record size is another important data item used
in many operations, particularly when the values
differ significantly for two relations involved in
an operation. For variable -length records, the
actual length value used—either the average or
the maximum—depends on the type of operation
to be performed.

dAr Number of distinct values of attribute A in
relation r. This value is important in calculating
the number of resulting records for a projection
operation and for aggregate functions like sum,
count and average.

x Number of levels in a multi-level index (B+-tree,
cluster index, etc.). This data item is used in
estimating the number of block accesses needed
in various search algorithms . Note that for a
B+-tree, x will be equal to the height of the tree.

sA Selection cardinality of an attribute. This is a
calculated value equal to nr / dAr. When A is a

key attribute, sA = 1. The selection cardinality
allows the query optimizer to determine the
“average number of records that will satisfy an
equality selection condition on that attribute”[5].

The query optimizer also depends on other important
data such as the ordering of the data file, the type of
index structures available and the attributes involved in
these file organization structures. Knowing whether
certain access structures exist allows the query
optimizer to select the appropriate algorithm(s) to use
for particular operations.

7.2 Expression and Tree Transformations
After a high-level query (i.e. SQL statement) has been
parsed into an equivalent relational algebra expression,
the query optimizer can perform heuristic rules on the
expression and tree to transform the expression and
tree into equivalent, but optimized forms. As an
example, consider the following SQL query:

select first_name, last_name
from drivers, vehicles
where make = “Chevrolet” and owned_by =

driver_id

A corresponding relational algebra expression is:
π first_name,last_name((σ make = “Chevrolet” (σ owned_by = driver_id

(vehicles X drivers)))

And the corresponding canonical query tree for the
relational algebra expression:

Suppose the vehicles and drivers relations both have
10,000 records each and the number of Chevrolet
vehicles is 5,000. Note that the Cartesian product
resulting in 10,000,000 records can be reduced by 50%
if the σ make = “Chevrolet”.operation is performed first. We
can also combine the σ owned_by = driver_id and Cartesian
product operations into a more efficient join operation,

π first_name,last_name

σ make = “Chevrolet”

σ owned_by = driver_id

X

vehicles drivers

Introduction to Query Processing and Optimization page 8 of 11

as well as eliminating any unneeded columns before
the expensive join is performed. The diagram below
shows this better, “optimized” version of the tree:

In relational algebra, there are several definitions and
theorems the query optimizer can use to transform the
query. For instance, the definition of equivalent
relations states that the set of attributes (domain) of
each relation must be the same—because they are sets,
the order does not matter. Here is a partial list of
relational algebra theorems from the Elmasri/Navathe
textbook [5]:

1. Cascade of σ : A select with conjunctive
conditions on the attribute list is equivalent to a
cascade of selects upon selects:

))...))((...(()(
2121 ... RR

nn AAAAAA σσσσ ≡∧∧∧

2. Commutativity of σ : The select operation is
commutative:))(())((

1221
RR AAAA σσσσ ≡

3. Cascade of π : A cascade of project operations is
equivalent to the last project operation of the
cascade:

)())...))((...((
121

RR AListAListAListAList n
ππππ ≡

4. Commuting σ with π : Given a π ’s and σ ’s
attribute list of A1, A2,…, An, the π and σ
operations can be commuted:

))(())((,...,,,...,, 2121
RR

nn AAAccAAA πσσπ ≡

5. Communativity of or X: The join and Cartesian
product operations are communative:
R S ≡ S R and R X S ≡ S X R

6. Commuting σ with or X: Select can be
commuted with join (or Cartesian product) as

follows:
a. If all of the attributes in the select’s condition

are in relation R then cσ (R S) ≡ (cσ (R)) S

b. Given select the condition c composed of
conditions c1 and c2, and c1 contains only
attributes from R, and c2 contains only attributes

from S, then cσ (R S) ≡ (1cσ (R)) (2cσ (S))

7. Commutativity of set operations (−∩∪ ,,):
Union and intersection operations are
commutative; but the difference operation is not:

RSSRRSSRRSSR −≠−∩≡∩∪≡∪ ,,

8. Associativity of , X, ∪ and ∩ : All four of these
operations are individually associative. Let θ be
any one of these operators, then:
(R θ S) θ T ≡ R θ (S θ T)

9. Commuting σ with set operations (−∩∪ ,,):Let

θ be any one of the three set operators, then:

cσ (R θ S) ≡ (cσ (R)) θ (cσ (S))

10. Commuting π with ∪ : Project and union
operations can be commuted:

))(())(()(SRSR
ListListList AAA πππ ∪≡∪

Using these theorems, an algorithm can be defined to
transform the original query expression/tree created by
the parser into a more optimized query. A detailed
example of such an algorithm can be found in the
Elmasri/Navathe textbook [5]—some of the key
concepts can be summarized as follows:

1. One primary objective is to reduce the size of the
intermediate relations, both in terms of bytes per
record as well as number of records, as soon as
possible so that subsequent operations will have
less data to process and thus execute quicker.

2. Operations, such as conjunctive selections, should
be broken down into their equivalent set of smaller
units to allow the individual units to be moved into
“better” positions within the query tree.

3. Combine Cartesian products with corresponding
selects to create joins—utilizing optimized join
algorithms like the sort-merge join and hash join
can be orders of magnitude more efficient.

4. Move selects and projects as far down the tree as
possible, as these operations will produce smaller
intermediate relations that can be processed more
quickly by the operations above.

π first_name,last_name

π make,owned_by

σ make = “Chevrolet”

vehicles

drivers

π first_name,last_name
, driver_id

owned_by = driver_id

Introduction to Query Processing and Optimization page 9 of 11

7.3 Choice of Evaluation Plans
The query optimization engine typically generates a set
of candidate evaluation plans. Some will, in heuristic
theory, produce a faster, more efficient execution.
Others may, by prior historical results, be more
efficient than the theoretical models —this can very
well be the case for queries dependent on the semantic
nature of the data to be processed. Still others can be
more efficient due to “outside agencies” such as
network congestion, competing applications on the
same CPU, etc. Thus, a plethora of data can exist from
which the query execution engine can probe for the
best evaluation plan to execute at any given time.

10. CONCLUSION

One of the most critical functional requirements of a
DBMS is its ability to process queries in a timely
manner. This is particularly true for very large,
mission critical applications such as weather
forecasting, banking systems and aeronautical
applications, which can contain millions and even
trillions of records. The need for faster and faster,
“immediate” results never ceases. Thus, a great deal of
research and resources is spent on creating smarter,
highly efficient query optimization engines. Some of
the basic techniques of query processing and
optimization have been presented in this paper. Other,
more advanced topics are the subjects of many research
papers and projects. Some examples include XML
query processing [3, 11], query containment [2],
utilizing materialized views [13], sequence queries [9,
10] and many others.

11. EXTENDING MY MINI-DB ENGINE

My primary goal in enhancing my “mini” database
engine application is to speed up the processing of
queries. Before we get in the details behind the
implementation plan for accomplishing this goal, let’s
look at what data structures, file structures and
algorithms are currently in place. Only the most
significant ones will be discussed.

11.1 Current Implementation

File Structures
• Record-number-ordered index. This index is

“low-level” and is not “seen” by the relational
algebra methods (i.e. select, project, etc.). It’s
purpose is to provide a primary access
mechanism to the data-file records. It is also the

“owner” of the state of each data-file record (i.e.
active or deleted).

• Hash-based, unordered, single-level, secondary
index. This index structure provides single-seek
access to data-file records. Because it is
unordered, only equality-based comparisons can
be utilized in locating records.

• Sequential, unordered data file. Due to the fact
that the current indices are unordered, this file
will not be able to be put into a physically sorted
format, even after a reorganization.

• Meta-Data file: This file stores all of the
information, in standard XML-formatted text,
pertaining to its corresponding relation. This
includes: table name; number of fields
(attributes); list of fields with their name, size
and type; primary key field identifier; foreign
key identifiers; list of indices with the index
name, index field name and type of index
(unique/key or clustered/secondary). Also, the
access algorithm for this file is flexible enough
to handle any additional data (singular or
nested).

Data Structures
• Each of the file structures has a corresponding

class with methods that handle the file access
(open, close, rename, etc.) as well as the
reading, updating, inserting and deleting of
records.

• Wrapping around the file structure classes is the
DBRelation class with methods that handle the
creation, opening and updating of the associated
files. This class also has high-level methods one
would associate with single-relation operations
such as: insert, delete, update and search.

• Wrapping around the DBRelation class is the
Mini_Rel_Algebra class with methods that
perform the following relational algebra
operations: select, project, Cartesian product,
union, intersection difference and join.

Algorithms
• DBRelation.Search() This method performs the

actual search for record(s) in a given relation. It
can accept multiple search fields, conditions and
search values for performing the equivalent of a
conjunctive select. The search values can be
either constant string values or references to a
particular field’s value. The search algorithm
itself can operate in two ways: 1. Linear search,

Introduction to Query Processing and Optimization page 10 of 11

where every record in the relation’s data file is
scanned and compared to the condition. 2.
Index lookup, by equality, on an attribute in the
condition list. The index lookup is essentially
equivalent to the S5 search algorithm detailed in
section 6.1. Note that if the record is found
using the index, then the remaining search
conditions, if any, are evaluated for the current
record. If the record is not found, then the
condition with the indexed attribute is false, and
the remaining conditions do not have to be
evaluated.

• Mini_Rel_Algebra.Join() The current
implementation of the join operation is
performed by executing a select operation
followed by a Cartesian product operation.

11.2 Proposed Enhancements

There are 6 main query execution speed enhancements
I plan on imple menting:

1. Implement a “record generator” so that a large
number (>100,000) of records can be populated
into the database. This will allow performance
comparisons to be made between the current and
new implementations.

2. Replace the current join algorithm with the J4 hash
join algorithm discussed in section 6.2. I expect a
very significant boost in performance, and, so that
speed comparisons can be made, I will keep the
old join method (rename it to OldJoin). The
syntax of the new Join() call will be the same:

Join(string relationName1, string
relationName2, string joinField1, string
joinField2)

3. Create a new HJIndex class to handle the hash
table file structure that will be needed by the new
hash join algorithm. Since most all of the current
DBIndex class’ existing access methods (add,
delete, modify) will most likely not need any
changes (even if they do, the changes will be
minor), the HJIndex will be inherited from the
DBIndex class.

4. Finish the implementation of the cluster index.
This new index structure will allow multiple
records to be retrieved utilizing the concepts of the
S5 search algorithm in section 6.1.

5. Modify the DBRelation.Search() method to utilize
the new cluster index.

6. Create a new DBQuery class. This will allow the
user to build and execute a query consisting of a
sequence of relational operations. This class will
be a simplified version in that it will only handle a
sequential list of operations. If time permits, I
may create a “true” query tree structure. The
following instance variables and methods will be
implemented:

ArrayList opList : Instance variable holding the
sequential list of relational operations.

DBOperation opObj : Object holding a relational
operation. DBOperation will either be a
structure or class that holds all of the
possible parameters involved in the various
types of relational operations.

DBQuery(string queryName) The constructor
method.

bool AddOp(string opName, string param1,
string param2, …) Adds an operation object
to the opList array. Will be overloaded to
handle the various parameter lists of the
different relational operations. For instance,
a project operation needs three parameters:
string opName, string relationName, string
attributeList.

void Clear() Clears the current query—
opList.Clear()

string Execute() Executes the current query.
The returned string will be the name of the
resulting relation.

string ToString() Returns a multi-line string of
the current list of operations and their
parameters.

11.3 Query Performance Comparisons
Time permitting, I will build a test database consisting
of several thousand records. This test database will
then be used to time the execution speeds of “identical”
queries in the existing and new version of the Mini
DBEngine application. The test results will be
compiled into a comparison table and included in the
report for the final version of the application.

Introduction to Query Processing and Optimization page 11 of 11

REFERENCES
[1] Henk Ernst Blok, Djoerd Hiemstra and Sunil

Choenni, Franciska de Jong, Henk M.
Blanken and Peter M.G. Apers. Predicting the
cost-quality trade-off for information retrieval
queries: Facilitatiing database design and
query optimization. Proceedings of the tenth
international conference on Information and
knowledge management, October 2001, Pages
207-214.

[2] D. Calvanese, G. De Giacomo, M. Lenzerini
and M. Y. Vardi. Reasoning on Regular Path
Queries. ACM SIGMOD Record , Vol. 32, No.
4, December 2003.

[3] Andrew Eisenberg and Jim Melton.
Advancements in SQL/XML. ACM SIGMOD
Record, Vol. 33, No. 3, September 2004.

[4] Andrew Eis enberg and Jim Melton. An Early
Look at XQuery API for Java™ (XQJ). ACM
SIGMOD Record, Vol. 33, No. 2, June 2004.

[5] Ramez Elmasri and Shamkant B. Navathe.
Fundamentals of Database Systems, second
edition. Addison-Wesley Publishing
Company, 1994.

[6] Donald Kossmann and Konrad Stocker.
Iterative Dynamic Programming: A new Class
of Query Optimization Algorithms. ACM
Transactions on Database Systems, Vol. 25,
No. 1, March 2000, Pages 43-82.

[7] Chiang Lee, Chi-Sheng Shih and Yaw-Huei
Chen. A Graph-theoritic model for
optimizing queries involving methods. The
VLDB Journal — The International Journal
on Very Large Data Bases, Vol. 9, Issue 4,
April 2001, Pages 327-343.

[8] Hsiao-Fei Liu, Ya-Hui Chang and Kun-Mao
Chao. An Optimal Algorithm for Querying
Tree Structures and its Applications in
Bioinformatics. ACM SIGMOD Record Vol.
33, No. 2, June 2004.

[9] Reza Sadri, Carlo Zaniolo, Amir Zarkesh and
Jafar Adibi. Expressing and Optimizing
Sequence Queries in Database Systems. ACM

Transactions on Database Systems, Vol. 29,
Issue 2, June 2004, Pages 282-318.

[10] Reza Sadri, Carlo Zaniolo, Amir Zarkesh and
Jafar Adibi. Optimization of Sequence
Queries in Database Systems. In Proceedings
of the twentieth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database
systems, May 2001, Pages 71-81.

[11] Thomas Schwentick. XPath Query
Containment. ACM SIGMOD Record , Vol.
33, No. 1, March 2004.

[12] Avi Silbershatz, Hank Korth and S.
Sudarshan. Database System Concepts, 4th
Edition. McGraw-Hill, 2002.

[13] Dimitri Theodoratos and Wugang Xu.
Constructing Search Spaces for Materialized
View Selection. Proceedings of the 7th ACM
international workshop on Data warehousing
and OLAP, November 2004, Pages 112-121.

[14] Jingren Zhou and Kenneth A. Ross. Buffering
Database Operations for Enhanced Instruction
Cache Performance. Proceedings of the 2004
ACM SIGMOD international conference on
Management of data , June 2004, Pages
191-202.

