
MINI-DB:
A Pedagogical tool for Teaching Advanced Database Systems

Hossein Hakimzadeh
Department of Computer and Information Sciences

Indiana University - South Bend
South Bend, IN 46615

ABSTRACT
It seems that designing and implementing database engines may
have become a lost art. Although most standard database text
books [1] [2] [3] include ample coverage of algorithms for design
and implementation database engines, many computer science
programs seem to provide minimal coverage of file organizations,
theoretical foundations, and algorithms necessary to build a
database engine.

The systematic removal of “file organizations and information
retrieval” as a topic of study coupled with greater emphasis on the
so called “practical applications” of databases, have joined hands
to eliminate the coverage of theory and implementation of the
underlying database engine.

1. INTRODUCTION
At IU South Bend, the computer science program offers a number
of database courses including a one at the 100 level, another at 400
level, and a third course at the 500 level. The 100 level is for non-
majors and targets novice practitioners. Our 400 level database
course targets juniors and seniors in our Computer Science and
Informatics programs and its goal is to survey the basic concepts
and theories behind the modeling and implementation of small to
medium scale database management system. The 500 level course
targets seniors and graduate students who have already completed
the 400 level database course and moves toward the internal design
and implementation of database engines.

In this paper, we will discuss a step by step process by which
students in our advanced database course design and construct a
simple, yet fully functional database engine. We will also explore
some lessons learned and future directions.

2. THE MiniDB SYSTEM
The goal of the advanced database course is to introduce the
students to the underlying theories, principles and practices for
implementing a simple and flexible database engine. The
prerequisite for the course is an undergraduate database course
which introduces the students to data modeling, relational model,

relational algebra, SQL, and some additional topics such as
transaction management, concurrency control, and data mining.

Conceptually, the advanced database course is divided into five
phases shown in [Figure 1]:

1. Preparation
2. Design and implementation of core algorithms

(implementation of MiniDB Engine)
3. Researching advanced algorithms
4. Implementation of advanced algorithms
5. Presentation of final project

Below we will describe each phase.

2.1 Preparation
During the preparation phase (bottom layer of Figure 1), students
are provided with a quick introduction to I/O devices, file
organizations and basic I/O facilities. Each student selects a
language and researches the file manipulation API for that
language. The result of their research is the compilation of a
survey paper. Typically, most students select C++ or JAVA for
this purpose, however, languages such as C, C#, and Ruby have
also been selected.

The goal of this phase is three fold. First, it provides the students
with extensive exposure to a topic which is often bypassed in
earlier programming and data structure courses. Second it allows
them to refine their research skills, and third it provides an
opportunity to collect and organize a comprehensive paper with
useful examples of I/O facilities in the language of their choice.
This comprehensive collection serves as a quick reference guide as
they work toward the development of the MiniDB.

2.2 Design and Implementation MiniDB
The design and implementation of MiniDB engine is performed in
three stages and each stage corresponds to an assignment.

During the first stage, the students construct classes for
performing sequential, random, and index sequential file access.
These classes create the underlying infrastructure for constructing
the data, meta-data, and index files [6], which are necessary for
creating database tables.

Preperation

Core
Algorithms

Design and Implementation
(MINI-DB Engine)

Advanced
Algorithms

Research

Implementation
(Final Project)

Presentation

Figure 1. MiniDB Conceptual Model

During the second stage, the meta-data class is extended to include
XML capabilities, and builds a new class for implementing a
minimal set of relational algebra operators such as select, project,
and cartesian product [7].

The third stage extends and refines the relational algebra class to
include additional operators such as join, union, intersect and
difference. It also extends the index class to include hashing [8].

Approximately ten weeks into the semester, after the completion
of the third stage, each student has a simple yet functioning
database engine which is based on relational algebra.

2.3 Research in Advanced Algorithms
During the Implementation of MiniDB engine, while the students
are engaged in constructing the engine, approximately 50% of the
lectures are dedicated to advanced database concepts. Such as
query optimization, security, concurrency control, replication,
distributed databases, and deductive databases. The above
coverage is meant to prepare the student for the next phase of the
course.

At this point, the students are asked to select a topic that most
interest them, review the related literature and write a research
paper on that topic. As part of their paper, they are asked to
propose an “Implementation Plan”, as to how they would
implement into their MiniDB, one or more of the techniques
discussed in their paper.

During the next several session, class lectures turn into class
discussion and brainstorming of the above proposals.

2.4 Presentation and Demonstration of Final Project
In the final phase of the project students follow through with their
implementation plan, develop a test plan and present their results
in class.

In the following section, we will highlight the design
considerations for the construction of the MiniDB system.

3. DESIGN CONSIDERATIONS
Initially, most students will find it difficult to envision creating a
database engine such as one shown in Figure 2, from scratch. In
order to guide the design and implementation process of the
MiniDB engine, a series of two week long deliverables have been
created. Each deliverable serves two purposes. First, it seeks to
incrementally construct new building blocks that move the project
toward the goal of constructing a database engine. The second
purpose is to systematically refine the previously constructed
code components.

The remainder of this section discusses the project deliverables.
These include the creation of: access mechanism, data definition
language (DDL), data manipulation language (DML), relational
algebra operations, meta-data, XML and the ability to create
primary and clustered index structures.

MINI-DB Engine

Random
IO

Index
File
.IDX

Meta
File

.MTA

Data
File

.DTA

Sequential
IO

XML

Table

B-Tree

Hash
Index

Mini-DB
Engine

GUI
Rel

Algebra Schema Tables...

Cluster
IndexCluster

Index

Figure 2. MiniDB Implementation Model

3.1 Access Mechanism
The goal of the of the first deliverable [6] is to construct a series of
classes for creating and manipulating simple data (.dta), index
(.idx) and meta-data (.mta) files. These three classes provide the
basis for creating a database table.

The data file (.dta) is a sequentially organized but directly
(randomly) accessed file. The file is sequentially organized in order
to provide for better space efficiency. At the same time the data
files are directly accessed to improve access speed. The data file
has a simple format which separates the fields and records using
delimiters such as "^" and "~" characters respectively.

 The index file (.idx) is direct access (random) file. Records in this
file are fixed size and have the following format:

unsigned long Key; // Key to search for
unsigned long Address; // physical file location
char Flag; // ACTIVE/DELETED

The meta-data file (.mta) is a sequential file which will maintain
schema information about the database. Meta-data files are quite
central to creating a database engine. Meta-data files are used at
many levels; first, they are associated with each data files created
by the user. Meta-data files are also used to maintain other schema
information such as user access and authorization, log information,
query optimization information, and other internal schema
information. Initially, the meta-data file format is quite simple;

however at later stages (described later in the paper) this class will
be enhanced to accommodate the XML file format. Initially, the
records in this file have the following format:

Tag Name=^ Field information[^Field information…]~.

Figure 3 below provides an example of meta-data file.

DATABASE_NM=^University~
TABLE_NM=^Student~
NUM_FIELDS=^2~
FN=^StudentID~
FS=^5~
FT=^String~
FN=^Student Name~
FS=^25~
FT=^String~
PK=^StudentID~

Figure 3. Sample meta-data file

3.2 Creating the Data Definition and Data Manipulation
Language
Once the initial data access objects are implemented, we are ready
to tackle the next phase. The goal of this phase is to construct a
simple data definition and data manipulation language for our
MiniDB engine [7]. Relational Algebra is chosen for this purpose.
The basic relational algebra operations include select, project, join,
union, intersection, difference, cartesian product and divide.
However, we split the implementation of these operators in to
two assignments. During the first assignment, the select, project
and Cartesian_product are implemented (Figure 4), and during the
next assignment, the relational algebra class is extended to include
join, union, intersect and difference (Figure 6).

Class Mini_Rel_Algebra {
bool create(relation_name, schema);
bool insert(relation_name, attribute_list,

value_list);
bool delete(relation_name, attribute_name,

condition,
 attribute_value);
bool modify(relation_name,

search_attribute_name,
 condition, search_attribute_value,
 modify_attribute_list,
 modify_value_list);
result_rel select(relation_name, attribute_name,
 condition, attribute value);
result_rel project(relation_name, attribute_list);
result_rel cartesian_product(relation_1,

relation_2);
 }

Figure 4. Relational Algebra Operations

In addition to creating a new class for relational algebra operators,
this assignment also incrementally refines the meta-data class.
During this phase, we replace the initial meta-data file format with

a simple XLM format. In addition we will create a new XML
parser. The format of the XML meta-data file is shown in Figure
5.

<SCHEMA_NAME>
Database Name

</SCHEMA_NAME>
<TABLE_NAME>

Table Name
</TABLE_NAME>
<NUM_FIELDS>

Number_of_Fields_In_Table
</NUM_FIELDS>
<FIELD>

<FIELD_NAME>
Field Name

</FIELD_NAME>
<FIELD_SIZE>

Field Size
</FIELD_SIZE>
<FIELD_TYPE>

Field Type
</FIELD_TYPE>

</FIELD>
::
<PRIMARY_KEY>

Field Name
</PRIMARY_KEY>
<FOREIGN_KEY>

Field Name
<REFERENCES_FOREIGN_TABLE>

Table Name
</REFERENCES_FOREIGN_TABLE>

</FOREIGN_KEY>
Figure 5. XML definition of the meta-data file

3.3 Extending the Relational Algebra Class and Refining the
Indexing Mechanism
The goal of this phase [8] is to first, extend and complete the set
of relational algebra operators (Figure 6) second, to refine and
optimize the index class using hashing techniques (Figure 7), and
finally to develop a cluster index class to handle indexing based on
non-key attributes (Figure 8).

Class Mini_Rel_Algebra {
bool create(relation_name, schema);
bool insert(relation_name, attribute_list,

value_list);
bool delete(relation_name, attribute_name,

condition,
 attribute_value);
bool modify(relation_name,

search_attribute_name,
 condition, search_attribute_value,
 modify_attribute_list,
 modify_value_list);
result_rel select(relation_name, attribute_name,
 condition, attribute value);
result_rel project(relation_name, attribute_list);
result_rel cartesian_product(relation_1,

relation_2);

result_rel join(relation_1, relation_2, condition_list);
result_rel union(relation_1, relation_2);
result_rel intersect(relation_1, relati on_2);
result_rel difference(relation_1,

relation_2);
}

Figure 6. Relational Algebra Operations (Extended)

The Hash-Index class can inherit the Index class and override its
find() method. This will allow for much better space utilization of
the index file as well as ability to accept multiple key type such as
long or character strings.

Class Hash_Index {
long insert(char *key);
long find(char *key);

}

Figure 7. Hash Index

The Cluster_Index class is primarily designed to accommodate
indexing of non-key attributes. The Cluster_Index can be either
based on the Index, class, Hash_Index class, or it can be separate
class.

Class Cluster_Index {
long build_index(relataion_name, char *nonKeyArtribute);
long find(char * nonkey); // return the pointer to cluster

}

Figure 8. Cluster Index

The Cluster_Index class will use one of the existing primary index
classes and extends it’s functionality to accommodate cluster
indexes on non-key attributes (Figure 8, 9). Cluster indexes can be
used to optimize a number of different operations, such as sort,
select, and join.

Value | Pointer

Value | Pointer

Value | Pointer

Value | Pointer

Value | Pointer

Value | Pointer

Value | Pointer

Value | Pointer

Value | Pointer

Value | Pointer

Primary Index
Unique values

Pointer Pointer

PointerPointer

Data record

Data record

Data record

Data record

Data record

Pointer Pointer

PointerPointer

Pointer Pointer

PointerPointer

Pointer Pointer

PointerPointer

Secondary Cluster
block of n pointers to

records

Data file

Data record

Figure 9. MiniDB Cluster-Index

3.4 Final Phase (Advance Algorithms)

The final phase of the course involves the creation and integration
of advanced components on top of the basic MiniDB engine
(Described in section 3.3 and 3.4 above). During past offering of
this course, student have been able to develop algorithms for
concurrency control [Aarti Khaire], database security, access
control, database integrity [Sue Gordon], external sorting [Hung
Truong Quoc], data mining [Bob Batzinger], query
optimization[Mike Rupley], distributed databases [10], and
deductive databases [Tom Perez].

Student who complete the final phase of the project are well
positioned to continue their research in the area of databases. In
the recent past, two graduate students have used their project as a
stepping stone in developing and proposing their graduate thesis.
Similar research opportunities are available for undergraduate
students who are interested in further study in the area of database
systems.

5. FUTURE DIRECTIONS
Our plan for the future is two folds. First, our goal is to make the
course more reachable to undergraduate students. Second, we
would like to make this project an open source, research and
teaching platform.

At the present, MiniDb is implemented in an advanced database
course which targets our graduate students. In order to make the
course more reachable to undergraduate students, we will develop
a robust open source API for the first two phases of the project.
This API provides our undergraduates with the proper
infrastructure to begin the course. We expect that undergraduates
will spend the first couple of weeks of the semester to read and
master the MiniDB concepts and learn its API.

Aside from our pedagogical goals, we will continue to use the
MiniDB as a tool for database research. Undergraduates and
graduate students who finish the project will be positioned to
conduct research in database systems. Having source-level access
to the MiniDB platform will allow them to implement existing
state of the art algorithms or propose their own, and then
implement and benchmark their algorithm against the state of the
art.

CONCLUSION
Computer science is an evolving and growing discipline. The
computer science curriculum is under constant pressure for
change. This pressure comes from many constituencies, including
ACM / AIS / IEEE-CS report on Computing Curricula [1,2];
ABET / CAC / EAC [7] accreditation guidelines; business and
industry demands; and the general globalization of information
technology. Although these forces are not always aligned, the
combined trajectory appears to be more toward contemporary
topics such as cyber security, distributed computing,
bioinformatics, and game programming, and slightly away from

traditionally core topics such as compilers, file organizations, and
operating systems. The cumulative and compound effect can
result in reduced understanding and appreciation of systems
software among our graduates. This paper discusses the design
and implementation of a database engine as the vehicle for
reintroduction of system development topics back into the
computer science curriculum.

REFERENCES
[1] Elmasri, R., Navathe, S., “Fundamentals of Database

Systems,” Fifth Edition, , Addison-Wesley

[2] Silberschatz, A., Korth, H., Sudarshan, S., “Database System
Concepts” , 5th edition, McGraw Hill, 2005.

[3] Date, C. J., “An Introduction to Database Systems”, Eighth
Edition, Addison Wesley, 2004.

[4] http://mypage.iusb.edu/~hhakimza/561/assign2.pdf
[5] http://mypage.iusb.edu/~hhakimza/561/assign3.pdf
[6] http://mypage.iusb.edu/~hhakimza/561/assign4.pdf
[7] Computer Science Accreditation Criteria (CAC), and

Computer Engineering Accreditation Criteria (EAC), accessed
on web on Dec. 2007 http://www.abet.org/

[8] Rababaah, H., “Distributed Databases Fundamentals and
Research”, Technical Report: TR-20050525-1, accessed on
web on Dec. 2007. www.cs.iusb.edu/technical_reports/TR-
20050525-1.pdf

Appendix A

Design specification for advanced algorithms typically
implemented during the last Phase of the course.

Query Optimization:

Class QueryOptimizer {

Tree *QueryTree; // original query tree
Tree *OptimizedTree; // optimized query tree.
Tree *Insert(Relational_algebra_operator,
 relation1, [relation2], [conditions]);
Tree *OptimizeQueryTree();
PrintQueryTree(Tree *);

etc.
}

2PL Concurrency Control:

Class ConcurrencyControl {

bool XLock(T-id, relation);
bool UnLock(T-id, relation);
bool XLock(T-id, relation, record);
bool UnLock(T-id, relation, record);
bool PrintLockTable();
bool DetectDeadlock();
T-id ResolveDeadlock();
Bool Abort(T-id);
etc.

}

Distributed Database

Class DistributedDB {

bool AddRelationToGlobalSchema(Relation,
 OriginatingNode);
bool RemoveRelationFromGlobalSchema(Relation,
 OriginatingNode);
bool DisplayGlobalSchema();
bool XLockRelation(T-id, relation);
bool UnlockRelation(T-id, relation);
relation ReadRemoteRelation(T-id, relation);
bool WriteRemoteRelation(T-id, relation);
etc.

}

Deductive Database

Class InferenceEngine{

bool Assert(Fact); // Fact =Headless horn clause
bool Assert(Fact_Relation);

bool AssertRule(Rule); //Rule Horn clause
bool AssertRule(Rule_Relation);

bool DeductiveQuery(Fact);
relation DeductiveQuery(Rule);

etc.

}

Simple SQL Interface based on EBNF Grammar.

Class SQL{

bool Lex (“SQL Query”); // Lexical Analysis
bool Parse(“SQL Query”);
// Translate SQL to Relational Algebra

string Translate2RelAlgebra(“SQL Query”);
etc.

}

sql_statement = insert | delete | update | select.

insert= INSERT INTO table_name
 ['(' field_name { ',' field_name } ')']
 (VALUES '(' value_litteral { ',' value_litteral } ')'
 | select_expression) .

delete= DELETE FROM table_name
 [WHERE search_condition].

update= UPDATE table_or_view_name
 SET column_name '=' value_litteral
 { ',' column_name '=' value_litteral }
 [WHERE search_condition] .

select= SELECT [DISTINCT | ALL]
 ('*' | ['(' field_name { ',' field_name } ')'])
 FROM from_table_name { ',' from_table_name }
 [WHERE search_condition]
 [ORDER BY order_list] .

