
 - 1 -

DISTRIBUTED DATABASES
FUNDAMENTALS AND RESEARCH

Haroun Rababaah

Advanced Database – B561. Spring 2005. Dr. H. Hakimzadeh

Department of Computer and Information Sciences
Indiana University South Bend

ABSTRACT

The purpose of this paper is to present an
introduction to distributed databases though
two main parts: in the first part, we present a
study of the fundamentals of distributed
databases (DDBS). We discuss issues
related to the motivations of DDBS,
architecture, design, performance, and
concurrency control, etc. In the second part,
we explore some of the research that has
been done in this specific area of DDBS.
The topics of this research include, query
optimization, distribution optimization,
fragmentation, optimization, and join
optimization on the internet. We include
examples and results to demonstrate the
topics we are presenting.

KEYWORDS

Distributed databases fundamentals, current
research: query optimization, distribution
optimization, fragmentation optimization,
and join optimization on the Internet.

1. Introduction

In today’s world of universal dependence on
information systems, all sorts of people need
access to companies’ databases. In addition
to a company’s own employees, these
include the company’s customers, potential
customers, suppliers, and vendors of all
types. It is possible for a company to have
all of its databases concentrated at one
mainframe computer site with worldwide
access to this site provided by
telecommunications networks, including the
Internet. Although the management of such
a centralized system and its databases can

be controlled in a well-contained manner
and this can be advantageous, it poses
some problems as well. For example, if the
single site goes down, then everyone is
blocked from accessing the databases until
the site comes back up again. Also the
communications costs from the many far
PCs and terminals to the central site can be
expensive. One solution to such problems,
and an alternative design to the centralized
database concept, is known as distributed
database.
The idea is that instead of having one,
centralized database, we are going to
spread the data out among the cities on the
distributed network, each of which has its
own computer and data storage facilities. All
of this distributed data is still considered to
be a single logical database. When a person
or process anywhere on the distributed
network queries the database, it is not
necessary to know where on the network the
data being sought is located. The user just
issues the query, and the result is returned.
This feature is known as location
transparency. This can become rather
complex very quickly, and it must be
managed by sophisticated software known
as a distributed database management
system or distributed DBMS [4].

1.1. Definition

A distributed database (DDB) is a collection
of multiple, logically interrelated databases
distributed over a computer network.

A distributed database management system
(DDBMS) is the software that manages the
DDB, and provides an access mechanism
that makes this distribution transparent to
the user.

 - 2 -

Distributed database system (DDBS) is the
integration of DDB and DDBMS. This
integration is achieved through the merging
the database and networking technologies
together. Or it can be described as, a
system that runs on a collection of machines
that do not have shared memory, yet looks
to the user like a single machine.

1.2. Motivations

§ The natural architecture of some

applications. The concept of global vs.
local scopes. A very common example
of that would be a bank that has local
branches, which mainly deals with data
related to local customers, on the other
hand this bank has a head quarters,
which controls the entire chain of the
local banks. Therefore, the database of
this bank is naturally distributed among
the different local sites.

§ Availability and reliability. Reliability is

defined as, the probability that the
system will be up at a given time. The
availability is defined as, the probability
that the system will be up continuously
during a given time period. These
important system parameters are
improved with the DDBS. In the
centralized DBS, if any component of
the DB goes down, the entire system
will go down, whereas in the DDBS,
only the effected site is down, and the
rest of the system will not be effected.
Further more, if the data is replicated at
the different sites, the effects is greatly
minimized.

§ Performance improvement. When large

DB is distributed onto number of sites,
the local subset of the database is a lot
smaller, which will improve the size of
transactions and the processing time.
For the transactions that need
accessing more than one site, the
processing can proceed in parallel,
improving response time.

For the DDBS to be able to provide the
previous advantages, it should be capable of
the following functionalities:

§ The ability to communicate via a
computer network to send and receive
data and queries from/to other sites on
the network.

§ To keep track of the database

distribution and replication among the
different sites. This is maintained in the
DDBMS catalog.

§ The adaptation of the new concept of

distributed transactions: the ability of
devising a strategy to execute a
transaction that involve accessing more
than one site [1].

§ The ability to maintain the consistency

of replicated data across the network.

2. DDBS Architecture

2.1. The Hardware

Due to the extended functionality the DDBS
must be capable of, the DDBS design
becomes more complex and more
sophisticated. At the physical level the
differences between centralized and
distributed systems are:

§ Multiple computers called sites.
§ These sites are connected via a

communication network, to enable the
data/query communications. Figure 1.1
illustrates this architecture.

Figure 2.1. Client/server architecture [1]

sever

client

Site 4

client

Site 1

client

Site 2

server

Site 3

Communication network

 - 3 -

Networks can have several types of
topologies that defines how nodes are
physically and logically connected. One of
the popular topologies used in DDBS, the
client-server architecture is described as
follows: the principle idea of this architecture
is to define specialized servers with specific
functionalities such as: printer server, mail
server, file server, etc. these serves then are
connected to a network of clients that can
access the services of these servers.
Stations (servers or clients) can have
different design complexities starting from
diskless client to combined server-client
machine. This is illustrated in Figure 1.1.

The server-client architecture requires some
kind of function definition for servers and
clients. Th e DBMS functions are divided
between servers and clients using different
approaches. We present a common
approach that is used with relational DDBS,
called centralized DMBS at the server level.
The client refers to a data distribution
dictionary to know how to decompose the
global query in to multiple local queries. The
interaction is done as follows:

1. Client parses the user’s query and

decomposes it into independent site
queries.

2. Client forwards each independent
query to the corresponding server by
consulting with the data distribution
dictionary.

3. Each server process the local query,
and sends back the resulting relation to
the client.

4. Client combines (manually by the user,
or automatically by client abstract) the
received subqueries, and do more
processing if needed to get to the final
target result.

We would like to discuss the different
architectures of DDBS for the two main
types, the client/server, and the distributed
databases [4]:

The client/server: The file server approach:
the simplest tactic is known as the file server
approach. When a client computer on the
LAN needs to query, update, or otherwise
use a file on the server, the entire file must
be sent from the server to that client. All of

the querying, updating, or other processing
is then performed in the client computer. If
changes were made to the file, the entire file
is then shipped back to the server. Clearly,
for files of even moderate size, shipping
entire files back and forth across the LAN
with any frequency will be very costly. In
terms of concurrency control, obviously the
entire file must be locked while one of the
clients is updating even one record in it.
Other than providing a basic file-sharing
capability, this arrangement’s drawbacks
render it not very practical or useful.

DBMS server approach: A much better
arrangement is variously known as the
database server or DBMS server approach.
Again, the database is located at the server,
but this time, the processing is split between
the client and the server, and there is much
less data traffic on the network. Say that
someone at a client computer wants to
query the database at the server. The query
is entered at the client, and the client
computer performs the initial keyboard and
screen interaction processing, as well as
initial syntax checking of the query. The
system then ships the query over the LAN to
the server where the query is actually run
against the database. Only the results are
shipped back to the client. Certainly, this is a
much better arrangement than the file server
approach! The network data traffic is
reduced to a tolerable level, even for
frequently queried databases. Also, security
and concurrency control can be handled at
the server in a much more contained way.
The only real drawback to this approach is
that the company must invest in a
sufficiently powerful server to keep up with
all of the activity concentrated there.

Two-tier client/server: Another issue
involving the data on a LAN is the fact that
some databases can be stored on a client
PC’s own hard drive while other databases
that the client might access are stored on
the LAN’s server. This is also known as a
two-tier approach, (Figure 1.2). Software
has been developed that makes the location
of the data transparent to the user at the
client. In this mode of operation, the user
issues a query at the client, and the software
first checks to see if the required data is on
the PC’s own hard drive. If it is, the data is

 - 4 -

retrieved from it, and that is the end of the
story. If it is not there, then the software
automatically looks for it on the server.

In an even more sophisticated three-tier
approach (Figure 1.3), if the software
doesn’t find the data on the client PC’s hard
drive or on the LAN server, it can leave the
LAN through a gateway computer and look
for the data on, for example, a large,
mainframe computer that may be reachable
from many LANs.

Figure 2.2. Two-tier client/server [4]

Figure 2.3. Three-tier client/server [4]

Three-tier approach: In another use of the
term three-tier approach, the three tiers are
the client PCs, servers known as application
servers, and other servers known as
database servers, (Figure 1.4). In this
arrangement, local screen and keyboard
interaction is still handled by the clients, but
they can now request a variety of
applications to be performed at and by the

application servers. The application servers,
in turn, rely on the database servers and
their databases to supply the data needed
by the applications. Though certainly well
beyond the scope of LANs, an example of
this kind of arrangement is the World Wide
Web on the Internet. The local processing
on the clients is limited to the data input and
data display capabilities of browsers such as
Netscape’s Communicator and Microsoft’s
Internet Explorer. The application servers
are the computers at company Web sites
that conduct the companies’ business with
the “visitors” working through their browsers.
The company application servers in turn rely
on the companies’ database servers to
provide the necessary data to complete the
transactions. For example, when a bank’s
customer visits his bank’s Web site, he can
initiate lots of different transactions, ranging
from checking his account balances to
transferring money between accounts to
paying his credit card bills. The bank’s Web
application server handles all of these
transactions. It, in turn, sends requests to
the bank’s database server and databases
to retrieve the current account balances, add
money to one account while deducting
money from another in a funds transfer, and
so forth.

Figure 2.4. Another version of three-tier [4]

Distributed Database

1. No replication: The first and simplest

idea in distributing the data would be to
disperse the six tables among the five
sites. If particular tables are used at
some sites more frequently than at other
sites, it would make sense to locate the

 - 5 -

tables at the sites at which they are
most frequently used. Benefits include:
local autonomy (security, concurrency,
backup, recovery), efficient local
transaction. Problems include: if one site
goes down, then it is not accessible by
the rest of the system. Expensive joins.
The security can be argued, one single
place, one database is more secure
than DDBS.

Figure 2.5. No replication approach [4]

2. Replication the entire DB at each site:

Benefits include, better availability. If
more than one site requires frequent
access to a particular table, the table
can be replicated at each of those sites,
again minimizing telecommunications.
And copies of a table can be located at
sites that have tables with which it may
have to be joined. Problems include,
less security, concurrency and
consistency. At the extreme: all tables
are replicated, very efficient for
availability and join, whereas it is the
worst alternative for concurrency,
consistency, and disk space Figure 1.6.

Figure 2.6. Replication of all tables [4]

3. Selective replication: replicate all at the

headquarters (improves join, all joins at
the headquarters, and replicate each
table only once in the network, so you
have 2 copies of each on the entire
network. Figure 2.7.

Figure 2.7. Selective Replication [4]

This last approach has some down sides,
more than two sites could use a table
frequently (need more replicas), bottleneck
at the headquarter for the join operations. To
avoid these, we use the heuristics:
§ Place copies of tables at the sites that

use them most heavily in order to
minimize telecommunications costs.

 - 6 -

§ Ensure that there are at least two
copies of important or frequently used
tables to realize the gains in availability.

§ Limit the number of copies of any one
table to control the security and
concurrency issues.

§ Avoid any one site becoming a
bottleneck.

Figure 2.7. illustrates a DDBS using these
heuristics.

Figure 2.7. Replication by heuristics [4]

2.2. The Software

In a typical DDBS, three levels of software
modules are defined:

§ The server software: responsible for

local data management at site.
§ The client software: responsible for

most of the distribution functions;
DDBMS catalog, processes all requests
that require more than one site. Other
functions for the client include:
consistency of replicated data,
atomicity of global transactions.

§ The communications software: provides
the communication primitives, used by
the client/server to exchange data and
commands Figure 2.2.

Figure 2.2. Client/Server Software [2]

Advantages of Client/Server architecture
include: More efficient division of labor,
horizontal and vertical scaling of resources,
better price/performance on client machines,
ability to use familiar tools on client
machines, client access to remote data (via
standards), full DBMS functionality provided
to client workstations, and overall better
system price/performance

Disadvantages of Client/Server architecture
include: server forms bottleneck, server
forms single point of failure, and database
scaling is difficult [2].

It is preferable for a DDMBS to have the
property of distribution transparency (Figure
2.3), where the user’s can issue a global
queries without knowing or worrying about
the global distribution in the DDBS.

Figure 2.3. Layers of transparency

Network

Replication

Fragmentation

Language

Data

Data Independence

 - 7 -

3. Fragmentation, Replication

In distributing and allocating the database in
the previous section, we assumed that the
entire relations are kept intact. However, in
DDBS we need to define the logical unit of
DB distribution and allocation. In some
cases it might be more efficient to split the
tables into smaller units (fragments) and
allocate them in different sites.
Fragmentation has three different types:

3.1. Horizontal Fragmentation

 As appears in Figure 3.1. the table G has
been added to demonstrate the
fragmentation operation. An example on
horizontal fragmentation is the employee’s
table (G). It makes since for the company to
split G into different partitions based on the
employees who work on that site. This
makes the management, queries, and
transactions convenient and efficient. The
Down side of this choice is that, whenever a
query involving all G records, it has to
request all partitions from all sites and do a
union on them. [4].

Figure 3.1. Fragmentation table G (1-5) [4]

Eid Efname Elname site Pos Salary

FRAGMENT 1

FRAGMENT 2

FRAGMENT 3

Figure 3.2. Horizontal Fragmentation

3.2. Vertical Fragmentation

In vertical partitioning, the columns of a table
are divided up among several cities on the
network. Each such partition must include
the primary key attribute(s) of the table. This
arrangement can make sense when different
sites are responsible for processing different
functions involving an entity. For example,
the salary attributes of a personnel table
might be stored in one city while the skills
attributes of the table might be stored in
another city. Both partitions would include
the employee number, the primary key of
the full table. A down side of this option is
that, a query involving the entire table G
(Figure 3.1) would have to request all
portions from all sites and do a join on them.
[4].

Eid Efname Elname Eid Pos Salary

FRAGMENT 1 FRAGMENT 2

Figure 3.3. Vertical Fragmentation

3.3. Hybrid Fragmentation

In this type of fragmentation scheme, the
table is divided into arbitrary blocks, based
on the needed requirements. Each fragment

 - 8 -

then can be allocated on to a specific site.
This type of fragmentation is the most
complex one, which needs more
management. This is illustrated in Figure
3.4.

Eid Efname Elname site Pos Salary

FRAG 1 FRAG 2

FRAG 3 FRAG 4

Figure 3.4. Hybrid Fragmentation

4. Query Processing

DDBS adds to the conventional centralized
DBS some other types of processing
expenses, because of the additional design
(hardware & software) to handle the
distribution. These expenses present as the
cost of data transfer over the network. Data
transferred could be, intermediate files
resulting from local sites, or final results
need to be sent back to the original site that
issued the query. Therefore, database
designers are concerned about query
optimization, which target minimizing the
cost of transferring data across the network.

One method to optimize query on DDBS is,
the simijoin, where a relation R1 can send
the entire join-column CR1 to the target
relation R2, then the site containing R2
would perform the join on CR1, and project
on the passed attributes. The resulting
tuples are then shipped back to R! for further
processing. This can significantly enhance
the query efficiency, since the data
transferred on the network is minimized [1].

5. Concurrency and Recovery

DDBS design of concurrency and recovery,
has to consider different aspects other than
of those of centralized DBS. These aspects
include:

§ Multiple copies of data: concurrency
has to maintain the data copies
consistent. Recovery on the other hand
has to make a copy consistent with
others whenever a site recovers from a
failure.

§ Failure of communication links
§ Failure of individual sites
§ Distributed commit: during transaction

commit some sites may fail, so the two-
phase commit is used to solve this
problem.

§ Deadlocks on multiple sites.

The following two sections describe two
suggestions to manage concurrency control
[1].

5.1. Distinguished Copy of a Data
Item

There are three variations to this method:
primary site technique, primary site with
backup site, and primary copy technique.
These techniques are described as follows:

§ Primary site
In this method, a single site is designated as
the coordinator site. All locks and unlocks for
all data units are controlled by this site. One
advantage is, easy to implement. However
two downsides of this method are:
overloading of the coordinator site, and this
site forms a single point failure for the entire
DDBS.

§ Primary site with backup site
This technique addresses the second
disadvantage in the 1st technique (primary
site) by designating a backup site, that can
take over as the new coordinator in case of
failure, in which case, an other backup site
has to be selected.

§ Primary copy technique
This method distribute the load to the sites
that have a designated primary copy of a
data unit as opposed to centralizing the
entire data units in one coordinator site. This
way if a site goes down, only transactions
involving the primary copies residing on that
site will be effected.

 - 9 -

5.2. Voting

This method does not designate any
distinguished copy or site to be the
coordinator as suggested in the 1st two
methods described above. When a site
attempts to lock a data unit, requests to all
sites having the desired copy, must be sent
asking to lock this copy. If the requesting
transaction did was not granted the lock by
the majority voting from the sites, then the
transaction fails and sends cancellation to
all. Otherwise it keeps the lock and informs
all sites that it has been granted the lock.

5.3. Recovery

The first step of dealing with the recovery
problem is to identify that there was a
failure, what type was it, and at which site
did that happen. Dealing with distributed
recovery requires aspects include: database
logs, and update protocols, transaction
failure recovery protocol, etc [1].

6. Research in DDBS

In this section, we present some of the
current research being done in DDBS,
specifically, distributed query optimization,

6.1. Distributed Query Processing

Using Active Networks. [5]

This paper, presented an efficient method
for Implementing query processing on high-
speed active WANs. The paper studied the
traditional criteria for distributed query
optimization, and devised a new criteria for
approaching DDBS query optimization,
based on the different characteristics of low
and high speed networks.

Conventional vs. high-speed networks

In conventional networks, transmission
delay is regarded as the dominant factor in
the communication cost function. For that
reason, many distributed query processing
algorithms are devised to minimize the
amount of data transmitted over the
network. However, in high speed networks,

latency (as well as local processing time and
disk I/O) becomes significant cost factors.
To see how the reversal of transmission
delay and latency takes place, we look at an
example illustrated in Figure 6.1. The LT
(latency time) is measured as 20
milliseconds, this time is constant, and does
not depend on the type of the network it only
depends on the distance and the speed of
light. The TT (transmission time) needed for
1 Mbit data on a 1 Gbit/sec network is 1 ms,
whereas on a low-speed network it is 20 s.
therefore it is clear that, in high-speed
networks the TT is insignificant compared to
the TL, whereas in low-speed it is the
dominant time.

(a) (b)

Figure 6.1. (a) Low-speed networks vs. (b)
High-sped networks. LT = latency time, TT =
transmission time.

Technology advances may increase the
processor capacity, disk access speed, and
memory access time, which will reduce local
processing time, however, due to the fixed,
finite speed of light, technology will not be
able to reduce latency delay. Hence, as
network bandwidths become higher and
higher, latency delay will become more and
more dominant as a delay factor for
response time.

Optimizing Domain vector bit-map in
high-speed networks

A traditional table index associates with
each index keyvalue a list of row identifiers
(RIDS) or primary keys for rows that have

LT LT

TT

TT

 - 10 -

that value. It is well known that the list of
rows associated with a given index keyvalue
can be represented by a bitmap or bit
vector. In a bitmap representation, each row
in a table is associated with a bit in a long
string, an N-bit string if there are N rows in
the table, and the bit is set to 1 in the bitmap
if the associated row is contained in the list
represented; otherwise the bit is set to 0.
This technique is particularly attractive when
the set of possible keyvalues in the index is
small, with a large number of rows, e.g. an
index on a sex attribute, where sex = ‘Male’
or sex = ‘Female’. In this example, there will
be only two lists to be represented in an
index, and the total number of bits stored will
be 2N, while one out of two bits will (usually)
be 1 in both bitmaps. (We can’t be sure that
these bitmaps will be complements of each
other, since a deleted row will result in a bit
that is zero in both.) When a large number of
values exist in an index, each of the bitmaps
is likely to be rather sparse, that is, very few
bits will be 1 in the bitmaps, resulting in
heavy storage requirements for storing a lot
of zeros. In such cases, bitmap compression
is used.

The point of using bitmap indices, of course,
is the tremendous performance advantage
to be gained. To start with there is reduced
I/O when a large fraction of a large table is
represented using a bitmap rather than by a
RID list. In addition, a bitmap for a foundset
on 10 million rows will require a maximum of
only slightly more than a megabyte of
storage (10 million bits = 1.25 million bytes)
so bitmaps can commonly be pipelined or
cached in memory, and the RIDS
represented are automatically held in RID
order, useful when combining predicates
and when retrieving rows from disk. In
addition, the most common operations used
to combine predicates, AND and OR, can be
performed using very efficient instructions
that gain a lot of parallelism by executing 32
or 64 bits in parallel on most modern
processors. This discussion is taken from
[6].

In this paper a new efficient algorithm was
devised for executing distributed queries.
The criteria was to minimize not only the
amount of transferred data, but number of
messages on the network (the latency) as

described earlier. They gave the following
example, which illustrates their algorithm:

DVA = Domain Vector Acceleration. JV =
join vector formed by ANDing both DVs of
the two relations. DVI = domain vector
identifier.
Consider a query Q requiring a join among
relation R1 at site S1, R2 at site S2, …, and
Rn at site Sn on a common attribute A, where
site S1 initiates the join.
Q = R1 |X| R2 |X|… |X| Rn
1. At site S1 , retrieve DV (R1.A) from disk

and simultaneously setup a point-to-
multipoint unidirectional connection
from site S1 to site Si (i = 2,..., n)

2. Send Q together with DV (R1.A) to site
Si (i = 2,..., n), then tear down this
connection

3. At each Si (i=2,...,n), retrieve DV(Ri.A),
simultaneously setup a point-to-
multipoint unidirectional connection
from site Si to every other site Sj (j =
1,..,i-1, i+1,...,n)

4. From each Si (i=2,...,n) ship its
DV(Ri.A) to every other site Sj (j =
1,...,i-1, i+1,...,n)

5. At each site Si (i = 1,..,n), logically AND
DV(Ri.A) (i = 1,...,n) to create JV

6. At each Si (i=1,...,n), use DVI(Ri.A) to
read participating tuples, Ri.A’, in JV
order.

7. From each site Si (i = 2,...,n) ship Ri.A’
to site R1 along the same connection
set up used in step c, then tear down
each connection

8. At S1, merge join Ri .A’ (i=1,...,n)
(already sorted in JV order) to get the
final result.

6.2. Distribution Optimization [7]

This paper presents two problems in DDBS
data distribution optimization and introduces
their solutions.

Problem 1: One-to-Many Database
Segmentation

An approach suggested here, is to partition
a large database (i.e., a set S of tables) into
multiple segments (i.e., a database segment
Si is made up of a subset of the tables in S,
such that Si S). So that each table appears
in one and only one segment and the union
of all segments is the set S, as depicted in

 - 11 -

Figure 6.2. For the general case of n data
sources:
(a) Consider now the specific example of a
database to be segmented as shown on
Figure 6.3. A 4- table segment candidate in
Figure 3 has 6 foreign-key dependencies,
i.e., 6 segment boundary “crossings”; an
arrow points to the child-end of a
relationship between two tables; the other 4-
table segment also has 6 dependencies,
and the 3-table segment has 8
dependencies; however, counting the total
number of crossings across all three
segments yields a total of N1= 10 foreign-
key dependencies.

Figure 6.2. Partitioning of database

(b) Formulation of the “segmentation design
problem” shows that the number of possible
pairwise dependencies (i.e., at least one
foreign key is involved between two tables)
is the number of combinations given by the
binomial coefficient . For the example
database in Figure 6.3.

Figure 6.3. Data segmentation

(c) Number of segments possible, 3 or 4
tables each: out of the set of 10 tables, for
example, 210 (using the combination nCr)
segments could be constructed with 4 tables
each; of the remaining 6 tables 2 segments
could be constructed with 3 tables each; the
total number of possible designs (i.e., one
design consisting of one 4-table segment
and two 3-table segments) would be
(210)(20) = 4,200, a very large number of
segment designs indeed. The mathematical
Formulation of the problem is given as:
Let Xji = 1 if table i belongs to segment j, 0 if
table I does not belong to segment j, and
such that i = A, B, …K, L, and j = 1, 2, and 3
as depicted in Figure 3. Segments 1,2, and
3, for example, have a total of 10 foreign-key
dependencies. Then, the optimization
problem can be stated as follows:

Minimize: ∑
lkji

XijXkl
,,,

where k, j = A,B,C, …L, the names of tables,
but k ¹j; also i,l = 1, 2, and 3, the names of
the segments, but i ¹ l, subject to constraints:
X1A + XIB + X1C +…+ XlL = 4 to require
only four tables in segment 1; X2A +X2B
+X2C +…+X2L = 4 to require only four
tables in segment 2; X3A +X3B +X3C
+…+X3L = 3 to require only 3 tables in
segment 3; X1A + X2A +X3A = 1 to require
that table A belong to one segment only
(either segment 1, 2, or 3); X1B +X2B +X3B
= 1 to require that table B belong to one
segment only; X1C +X2C +X3C = 1 to
require that table C belong to one segment
only; and so forth for all other remaining
tables; also, and Xij = 1 or 0 for all i and j.
The graphical solution of this example is
given in Figure 6.4. This formulation can be
generalized to an arbitrary distribution
problem.

Figure 6.4. Optimal solution

Single
Large DB

DB1 DB2 DBn

 - 12 -

Problem 2: Many-to-One Database
Segmentation

In the case where the data is distributed
across the network, and the designer is
interested in a subset of this data, giving that
the data is partially replicated, we have a
problem of optimizing the set of sites that
contain the data of interest.
A decision point occurs given the
opportunity to select a “preferred subset” of
n data sources that meets the following
criteria:
(1) All the desired data elements are
represented in this preferred subset.
(2) It contains the smallest number of data
sources needed to provide all the data
elements in the “design subset of data
elements”.
(3) It belongs to the set of non-inferior
solutions on the Pareto design frontier. This
frontier can be obtained by considering
multiple criteria (e.g., minimize design cost,
minimize aggregate query response, other)
within a multiple-criteria decision making
(MCDM) framework.

Figure 6.5. Alternative multiple data sources

Decision problem. Next, a decision problem
is formulated via mathematical programming
(MP) where the design variables become
decision variables. Adding a set of
constraints to the problem, the MP
technique proceeds to find a combination of
data elements and data sources that identify
an optimal solution, e.g., a smallest-cost
solution. Cost and query response time
parameters are as shown for this illustrative
example (Table 6.1)

Table 6.1. Cost and Query time.

Multiple criteria

Multiple criteria in distributed database
design can include:

§ Cost
§ Performance (query response time,

other)
§ Reuse/sharing of data sources
§ Flexibility of configuration

Multiple criteria can be optimized by one
cost function, a linear combination of
individual cost function representing each
criteria. The different waits can then, be
varied to get different possible solutions,
then to compare and select the best fit the
designer criteria, given that the design
selected is feasible and applicable.

6.3. Fragment Allocation in DDBS [8]

This paper targets fragment allocation
problem, assuming that the database is
already distributed. This study aims to find
the optimal number of copies per each
fragment and the optimal allocation of
fragments into different sites. The measure

 - 13 -

of optimality are: Assume that we have a
WAN consisting of sites S = {S1, S2, …,
Sm}, on which a set of transactions T = {T1,
T2, …, Tq} is running, and a set of
fragments F = {F1, F2, …, Fn}
1. Minimal cost: The cost function consists

of the cost of storing each Fj on site Sk,
the cost of querying Fj at site Sk, the
cost of updating Fj at all sites where it is
stored, and the cost of data
communication.

2. Performance: Two well-known
strategies are to minimize the response
time and to maximize the system
throughput at each site.

The criteria of allocation: CPU and I/O time
is not considered as a limiting factor, since
the WAN considered is at 50 kbps
transmission rate. The ultimate goal
becomes, allocating fragment copies to sites
such that the total communication cost is
minimal.

Information Requirement

Data information: fragment size Fj.
Transaction information: RM = retrieval
matrix, UM = update matrix, Selectivity
matrix, Frequency matrix, Figure 6.6. Site
information is storage and processing
capacity = constrains (not considered in this
study). The network information, is the
transmitting cost = fixed + variable costs.
FREQ = transaction frequency,

Figure 6.6. Transaction matrices

Cost formulation

CC = communication cost, FAT = fragment
allocation table, CTR = cost of transmission,

The solution space of large (2m-1)n, m =
number o sites, n = number of fragments.
This paper approach the optimization
problem by heuristic algorithms.

6.4. A Probe-Based to Optimize Join

Queries in Internet DDB [9].

§ Introduction and motivation

This paper addresses the problem of the join
operation optimization in Internet DDBS.
Conventionally, this problem was solved by
selecting between two possible alternatives:
the simple join, and the smi-join. The
conventional optimizers are static ones, in
the sense that they rely on the assumption
that the needed parameters involved in the
optimization criteria is given and they are
static. However, in the Internet DDBS, these
parameters are far from static, and they
should be dynamically updated. This paper
addresses this need and presents an
adaptive solution to dynamically optimize the
join operation.

§ Data transfer cost analysis

SQO: static optimizer, RTO: runtime
optimizer, R = Relation, a = the projection
attribute, l = local, r = remote, S = tuple size,
N = number of tuples, j0 = joint, j1 = semi-
joint, C0 = fixed transfer cost, C1 = transfer
cost per byte, and C() = total cost.

C(j0) = C0 + C1.Sr.Nr
C(j1) = 2C0 + C1(Sla.Nl + S(j0r)

 - 14 -

SQO will be in accurate in comparing
between the two costs C(j0) and C(j1)
because the following parameters are not
static: C1 depends on the instantaneous
situation of the internet, and never fixed. The
estimation of the intermediate result S(j0r) is
not accurate because it the uses the
relation:
S(j0r) = domain(a) . selectivity(Rl,a) .
slectivi ty(Rr, a)

The assumptions are, Sa is fixed, and tuples
are distributed between Rl, Rr independent
of a.

§ The RTO algorithm

1. Estimate the term C1.Sj0r: send x tuples

(these tupls consists only of the ‘a’
attribute) to site 2 and join this x subset
with the Rr at site 2. measure the
response time and normalize it to x.

2. Estimate the term C1.Sr: site 1 receives
x tuples of Rr, join with Rl, estimate the
execution time and normalize to x.

3. The final comparison of the two
alternatives will be:

C(j0) = Nl.Cl2r + estimated(Sj0r).Cr2l
C(j1) = Nr.Cr2l

The number of x-tuples used for this
algorithm was taken between (1-10)% of Nl.

§ Adaptation in the algorithm

Some queries can take a long time.
Therefore since the Internet conditions can
change any time, the algorithm divides the
join operation in to sub-operations, and keep
track of the statistics of the current sub-
operations. The plan is accordingly changed
if needed, between these sub-operations.

§ Results

The experiment setup is illustrated in Figure
6.7. and the most important results is
illustrated in Figure 6.8.

Figure 6.7. Experiment setup

Figure 6.8. Comparison of the different
alternatives of the join operation over the
internet.

7. Future Work

Our current DBMS is implemented as
centralized DBMS. After we studied the
different alternatives of distributed database
designs, we will implement some the ideas
explored in this study to upgrade our current
system in to the new DDBMS HDBE_net® .
These ideas include: the peer-to-peer
architecture, a simplified version of

 - 15 -

concurrency control, communication
protocol, and semi-joint, etc.

8. Summary and Conclusion

We presented an introduction to distributed
database design through a study that
targeted two main parts: in the first part we
presented an exploration of the
fundamentals of DDBS, and the alternatives
of their design. These alternatives
addressed issues such as, architecture,
distribution, query processing, etc.
concurrency control, etc. In the second part,
we explore some of the research that has
been done in this specific area of DDBS.
The topics of this research include, query
optimization, distribution optimization,
fragmentation, optimization, and join
optimization on the internet. We include
examples and results to demonstrate the
topics we discussed.

REFERENCES

1. Ramez Elmasri, and Shamkant B.

Navathe. 1999. Fundamentals of
Database Systems.
Addison Wesley Longman, Inc.

2. Tamer Özsu, and Patrick Valduriez.
1998. Distributed Database
Management Systems. Purdue
University, Computer Science
department.
www.cs.purdue.edu

3. The University of Queensland, School of
Information Technology and Electrical
Engineering. 2000. Advanced Database
Systems.
http://www.itee.uq.edu.au/

4. Mark L. Gillenson. 2004. Fundamentals of
Database Management Systems.
Wiley E-Books.
www.wiley.com/

5. Zhili Zhang and WiliamPerrizo. 2000.
Distributed Query Processing Using
Active Networks. ACM 1-58113-239-
5/00/003

6. Patrick O’Neil, and Goetz Graefe. 1995.

Multi-Table Joins Through Bitmapped
Join Indices. SIGMOD Record, Vol. 24,
No. 3, September 1995

7. Ambrose Goicoechea. 2000.

Requirements Blueprint and Multiple
Criteria For Distributed Database
Design. International Council on
Systems Engineering (INCOSE) 2000.

8. Yin-Fu Huang, and Jyh-Her Chen. 2001.

Fragment Allocation in Distributed
Database Design. Journal of Information
Science and Engineering 17, 491-506
(2001).

9. Cyrus Shahabi, Latifur Khan, and
Dennis McLeod. 2000. A Probe-Based
Technique to Optimize Join Queries in
Distributed Internet Databases.
Knowledge and Information Systems
(2000) 2: 373-385

