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Abstract

In this paper we present three algorithms that build graph layouts

for undirected, weighted graphs. Our goal is to generate layouts that

are consistent with the weights in the graph. All of the algorithms are

force-oriented and have been successful in solving the problem up to a

certain precision. They all start with a random layout and improve it

by iteratively repositioning the vertices to reduce the current error. The

�rst two methods move the vertices along one edge at a time, either by

selecting it randomly, or by following a breadth-�rst strategy. The third

method computes the result of all of the tension forces occurring in each

vertex and moves all of them in each step along the resulting vectors. We

also show that if we start building the layout with a robust method and

then re�ne the con�guration with a more precise one, we can improve the

quality of the solution.

1 Introduction

Let us suppose that millions of years from now aliens discover traces of human
civilization on Earth and they attempt to recover our history from them. More-
over, suppose that the continents have derived from the form that they have
today, and that all that the aliens can �nd is a schedule of an airline company
featuring the duration of various ights from a location to another. The ques-
tion is, can the aliens reconstruct the current map of the world based on that
timetable?

To express this problem in mathematical terms, given an undirected and
weighted graph, we must assign a 2D or 3D point to each of the vertices in the
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graph (a layout) such that for every two vertices A and B such that the edge
A;B exists in the graph, the distance between the points assigned to them is
equal to the weight of the edge.

Extensive work has been accomplished on drawing unweighted graphs with
emphasis on showing the structure of the graph in the geometrical representation
(Battista et al. [15], Diaz, Petit, and Serna [5]). Layouts presenting some
aesthetic qualities are also appreciated (Gajer and Kobourov [12], Nesetril [16]).
The problem is even more interesting and challenging when the graphs to be
drawn are large (Gajer and Kobourov [12], Erlingsson and Krishnamoorthy [11],
Brandes and Wagner [3], Hadany and Harel [13]). Another approach is to build
the graph layout according to constraints that can be user-de�ned (Dornheim
[7], Tamassia [18], He and Marriott [14]).

The best-known heuristic for generating graph layouts is certainly the spring
algorithm (Eades [8]) that regards the edges in the graph as springs connecting
the vertices such that the springs attract the vertices if they are too far apart
and repel them if they are too close. In addition, non-connected vertices repel
each other. In the usual implementation, the edges are expected to have the
same length. An interesting model (Branke, Bucher, and Schmeck [4]) combines
this method with the use of genetic algorithms to take into account other op-
timization criteria like the number of edge crossings or the number of di�erent
angles in the drawing.

Part of the research on graph layouts has also focused on weighted graphs
and the best methods seems to be force-oriented (Battista et al. [15], Eades
and Kelly [10], Bodlander et al. [1]). In one approach, Eades and De Mendon�ca
[9] solve the triangulation conicts in the graph by creating copies of certain
vertices to obtain not only an equilibrium layout but also one which is completely
tension-free.

Among the applications of these algorithms we can cite designing electronic
circuits (Battista et al. [15]), designing web sites and visualizing the content
of the World Wide Web (Brandes et al. [2]), parallel computing and VLSI
(Diekmann et al. [6]).

The methods we present in this paper can be seen as variations of the spring
algorithm (Eades [8]) in which we ignore the repulsion force exerted by non-
adjacent vertices in the graph. The criteria we are interested in is the consistency
between the distances between vertices in the graph and the weights of the edges.

The paper is structured the following way: Section 2 introduces the prob-
lem and two of our models that minimize the error in the graph. Section 3
discusses the existence of a solution and presents a third method that can �nd
an equilibrium layout even when it is not possible to generate an exact solution.
Section 4 presents some experimental results that validate our approach. Sec-
tion 5 discusses possible graph topologies and the geometrical similarity between
the original con�guration of the graph and the layout found by our algorithms.
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2 Layouts Minimizing the Error

In this section we introduce the problem and present two methods aiming to
generate layouts minimizing the error in the graph de�ned as the absolute dif-
ference between the weights of the edges and the Euclidian distance between
the vertices.

2.1 The Problem

De�nition. Let G = fV ; Eg be a graph where V is the set of vertices, jVj = n, and
E is the set of edges, jEj = m. A layout for the graph is a function P : V ! R

p

that maps each vertex v 2 V to a geometrical point in Rp, where usually p = 2
or 3. The edges are represented as line segments between the points associated
with the vertices composing them.

For any two vertices u; v 2 E , we will denote the undirected edge fu; vg 2 V
by uv.

Problem. Let G = fV ; E ; Wg be an undirected, weighted graph where the
weights of the edges are given by the function W : E ! R

+. We must �nd a
layout P : V ! R

3 such that 8u; v 2 V ; d (P (u); P (v)) =W (uv), the weight of
the edge uv. A layout with this property will be called a consistent layout for
this graph.

If V = fv1; v2; : : : ; vng, then we must �nd a set of points fP1; P2; : : : ; Png
such that if there is an edge between two vertices vi and vj , vivj 2 E , then the
points associated with these vertices are placed at a distance from each other
equal to the weight of the edge.

d (Pi; Pj) =W (vivj) (1)

We can express the constraints in Equation 1 as a system of m equations
of second degree with 3n variables. Let us denote each of the points as a 3-
dimensional vector Pi = (xi; yi; zi); 1 � i � n, and the weight of the edge
vivj 2 E by wij . Then for each edge vivj 2 E , we have the following equation:

(xi � xj)
2 + (yi � yj)

2 + (zi � zj)
2 = wij (2)

This system of equations has either no solution, or an in�nity of them. Any
isometric geometrical transformation, for example, a translation, rotation, or
symmetry, applied to a consistent layout, transforms it into another consistent
one.

This problem has been proven to be NP-hard (Eades and Mendonca [9]).
Moreover, the entailed equations can be sti�, which makes them hard to solve.

2.2 Our Model

Following the ideas from the the spring algorithm and most of the force-oriented
methods, the graph forms a dynamic system in which each element (vertex) is
attracted or repelled by its neighbors according to the discrepancy between the
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distance between the points assigned to the vertices and the weight of the edge
they form in the graph. In our model, if two vertices are not neighbors in the
graph, then they do not interact directly with each other.

The algorithms to be presented in this section consist in passing from one
state of the system to another one of greater probability. Both of them reposition
one vertex at a time in such a way as to reduce the error on one of the edges
starting from it.

The �rst algorithm, that we refer to as the random edge (RE) algorithm,
chooses an arbitrary edge in the graph at each iteration and moves one of the
points associated with the vertices composing the edge. The point is moved on
the line containing the two points, further away from the second point if the
distance is smaller that the weight of the edge, and closer to the second point
if the distance between them is greater than the weight of the edge.

Let A and B be two vertices in the graph such that the edge AB is present in
the graph with the weight WAB . Suppose that the random function has chosen
this edge at a particular iteration of the algorithm and that PA = (xA; yA; zA)
and PB = (xB ; yB ; zB) are the points currently assigned to the vertices. Let us
denote by errAB the error on the edge AB computed as the di�erence between
the weight of the edge and the Euclidian distance between the two points:

errAB =WAB � d(PA; PB): (3)

This error gives us an estimation of how much the points are misplaced with
respect to each other considering that the weight of the edge represents the ideal
distance between them. If the error is positive, then the points are too close to
each other. If the error is negative, the points are too far apart.

If the error is not equal to 0, we will adjust the position of the vertex B by
assigning it a new point P 0

B determined in the following way:

P 0
B = PB + " �

errAB

d(PA; PB)
� (PB � PA); (4)

where " is a constant, 0 < " < 1.
In this formula, if the error is positive, then the point PB will be moved

away from PA on the line containing PA and PB . If the error is negative, the
point PB will be moved closer to PA on the same line.

To justify the above formula, let us notice �rst that the new length of the
edge is closer to the weight of the edge than the previous one. Thus, we can
calculate:

d(PA; P
0
B) =

����" �
errAB

d(PA; PB)
+ 1

���� � d(PA; PB) = " � errAB + d(PA; PB)

The new error associated with the edge (A;B) is

err0AB =WAB � d(PA; P
0
B) = (WAB � d(PA; PB))(1� ")

= errAB(1� ")
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Since we know that 0 < " < 1, we can conclude that

jerr0AB j < jerrAB j

Thus, the procedure reduces the error on this particular edge. Moreover, we
can note two things. First, if " = 1, then the new error will be null: err0AB = 0.
Second, if we iterate the modi�cation of PB that we have described, the error is
converging to 0 because we multiply it at each iteration with a positive constant
that is less than 1.

The algorithm will most probably not choose the same edge for the next
iteration, but another arbitrary edge in the graph. The previous observations
do not guarantee that the error on every edge will be converging to 0 because
the improvement of the error on one edge can deteriorate the error on another
one. The experimental results to be presented in Section 4 have shown that the
total error in the graph decreases in general if we compute it periodically after a
number of iterations equal to a multiple of the number of edges. Still, iteration
by iteration, this is not a completely monotone trend.

The parameter " allows us to control the amount of adjustment that is
performed at each step and thus, decide on the convergence rate.

Here is the pseudocode version of the algorithm that we have just described:

for a number of iterations

for the number of edges m

select_random_edge(A, B);

adjust_edge(point[A], point[B], weight[A, B], epsilon);

The second algorithm that we refer to as the breadth-�rst scan (BFS) algo-
rithm we propose uses the same method to adjust an edge (Equation 4), but
it does not choose the edge randomly. At each iteration, the algorithm starts
with a randomly chosen vertex (origin), and it adjust all the other vertices in
the graph starting from this origin with a breadth-�rst scanning method. Thus,
the direct neighbors of the origin will be adjusted in the �rst steps, then all
of their neighbors, and so on. The adjustment is spreading in the graph as a
wave starting from the origin. The only random component in this variant is
the choice of the origin.

This method presents the advantage that when a vertex is moved on an edge,
we know that by decreasing the error on that edge, we don't a�ect the edges con-
sidered beforehand in that iteration, only edges to be visited afterward or not at
all. Thus, we expect this algorithm to decrease the total error more consistently
than the �rst one, which is actually what we have observed in our experiments
(Section 4). By starting from a di�erent origin at every iteration, we insure that
the layout will not prematurely converge to a suboptimal con�guration and that
all of the edges in the graph will be visited at some point.

The second algorithm has the following pseudocode:

for a number of iterations

queue = empty;
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origin = random(number_of_vertices);

queue += origin;

while (queue is not empty)

A = queue--;

for every B, a neighbor of A

if (B has not been in queue)

adjust_edge(point[A], point[B],

weight[A, B], epsilon);

queue += B;

There are two distinct sets of problems that we must consider for testing
and validating our algorithms.

In the �rst category, we have graphs for which there exists a consistent
layout. For this category, we expect the breadth-�rst scan algorithm to converge
faster to a possible solution.

In the second category, we have problems for which there is no consistent
layout. In this case, we aim to �nd the layout that is closest to an equilibrium,
or in other words, that minimizes the total edge error in the graph. We think
that in some cases the random edge algorithm could �nd better solutions for
this category of problems.

3 Approximate Solutions

The algorithms that we have presented work well when there exists a solution
to the problem. In this section, we would like to express the requirements for
an approximate optimal solution in the case where an exact solution does not
exist and describe a third algorithm that is more appropriate for this case.

3.1 Minimal Total Error

The necessary conditions for the existence of an exact solution are related to the
properties of the Euclidian distance. Thus, if the weights of the edges represent
actual distances, then they must satisfy the following conditions:

8A; B 2 V ; WAB � 0 (5)

8A; B 2 V ; WAB =WBA (6)

8A; B; C 2 V ; WAC �WAB +WBC (7)

For an undirected graph, the conditions 5 and 6 are trivial. Equation 7 is
also known as the triangulation condition.

These constraints represent necessary but not suÆcient conditions for the
existence of the solution. For example, the following graph satis�es all of these
conditions, but no layout for this graph can be consistent with the weights.

The constraints expressed in Equations 5, 6, and 7 are not suÆcient condi-
tions for the existence of the solution even in the case of a completely connected
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Figure 1: A graph with no solution

graph. For example, the following graph satis�es all of the conditions and is
completely connected, but no layout can be consistent with its weights. It can be
proven that given the weights in the triangles �ABC and �ABD, the minimal
and maximal distances between the vertices C and D must be approximately
3.623 and 10.764 respectively. The minimal distance between C and D is at-
tained when the two triangles are coplanar and C and D are on the same side of
the line AB. The maximal distance is attained when the triangles are coplanar
but on opposed sides of the line AB.

7

5

8 8

A B

5

C

3.5

D

Figure 2: A complete graph with no solution

To verify the condition 7 for any three vertices in the graph, we must dispose
of the edges forming the triangle, and this is not always the case. It seems
appropriate to extend the triangulation condition to any polygon or cycle in the
graph, as expressed in Equation 8. Again, as before, this is a necessary but not
suÆcient condition for the existence of the solution.

8n 2 N; n � 3; 8A1; A2; : : : ; An 2 V ;

WA1An �WA1A2
+WA2A3

+ : : :WAn�1An (8)

Although an algorithm that veri�es the condition 8 would be exponential, it
is much easier to generate graphs for which we know that there is a solution. For
this, we can start with an unweighted graph, assign 3D points to the vertices,
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and then set the weights according to the Euclidian distance between these
points.

The same way, it is easy to generate graphs for which the problem is insolv-
able. For this, the graph must contain at least one cycle, because there is always
a solution for a tree. We can set the weights in a cycle of the graph such that
the constraint 8 is not satis�ed. This operation is linear in the selected cycle.

In the case where there is no solution for a given graph, we would like to
�nd a layout that minimizes the total absolute error in the graph:

total error =
X

8AB2E

jerrAB j (9)

The algorithms presented in the previous section are designed to minimize
the total error. In the next paragraph we introduce a third algorithm that aims
to �nd an equilibrium con�guration in which the tension generated by the error
on all the edges connected to each vertex compensate each other.

3.2 Equilibrium Layout

Let us suppose that we can construct a physical representation of the graph
using interconnecting springs for the edges, as in the spring method. Each spring
corresponding to an edge would have an initial length equal to the weight of the
edge and a section much smaller than the length. These springs can only be
deformed along the main direction. When extended, the springs tend to contract
to their initial length, and when compressed, they tend to extend. Moreover,
each spring creates a contracting or extending force along the main direction
proportionate to the amount of deformation that was applied to it.

We can build the graph using these springs by deforming them as necessary
to �t the connections in the description of the graph. The physical construction
would then naturally evolve to an equilibrium state in which the deformation
tensions compensate each other, if they are not solved.

With the next algorithm we try to �nd the equilibrium solution for the
situation that we have described.

We focus again on the points representing the vertices in the graph. For
each point, a number of forces exert on it as a result of the deformation along
the edges connected to the vertex. If the result of all the forces is not 0, then
the point will be pushed in the direction of the resulting force.

We can now express the condition for the solution with no local tension.
We would like to �nd a layout for the graph such that the result of all the
deformation forces that exert on each vertex is a null vector. An approximate
solution must minimize the total norm of the resulting tension force in each
vertex. We believe that for any graph, there exists at least one equilibrium
solution.

In the following algorithm, that we will refer to as the tension vector (TV)
algorithm, for each of the edges that has su�ered deformation, opposite forces
of equal norm are exerted on the vertices composing the edge. Thus, the result
of all the tension forces in the graph is always 0.
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Figure 3: Resulting tension force

For example, let us suppose that a vertex A is connected to three vertices
B1; B2; B3 as in Figure 3.

On each of the edges ABi 2 E , i = 1; 2; 3, the deformation su�ered by the
edge engenders a force proportional to it in the contrary direction, that we have
denoted by ~Fi, i = 1; 2; 3. Thus, from the direction of these forces we can deduce
that the points corresponding to the vertices B1 and B3 are closer to the point
associated with the vertex A than they should be. On the contrary, the point
associated with B2 is farther from the point assigned to A than indicated by
the weight of that edge.

By composing the three deformation forces ~Fi, i = 1; 2; 3, we obtain the
resulting force that applies to A, denoted by ~R = ~F1 + ~F2 + ~F3. The algorithm
assumes that the point corresponding to A will be moved along ~R until the
resulting force is null.

We still have to de�ne the the deformation force in a precise way. We can
start by the amount of deformation errAB which has been de�ned in Equation
3 as the di�erence between the weight of the edge AB and the distance between
the points associated with the two vertices, PA and PB . Then we can de�ne the
deformation force applied to the point PB as being

~FAB = errAB
~AB

k ~ABk
(10)

Thus, is the error is positive, then the two points are too close and PB should
move away from PA, which is in the direction of the vector ~AB.

In Equation 10, we have assumed that the deformation su�ered by the edge
AB is equally distributed between the two points. Thus, for an undirected
graph, for each force ~FAB , there is a corresponding opposing force equal in
norm applied to the other extremity of the edge:

~FAB = �~FBA

We could extend the model to oriented graphs by computing the tension
vector on an edge as the average between the tension vectors resulting from
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applying Equation 10 to each direction of the edge. If the edge goes in only one
direction, the tension vector on the other direction would be 0. For example,
the force applied to PB as a result of the vertex A is equal to:

~F(A)B =
1

2
(~FAB � ~FBA)

Then we can de�ne the resulting force applied to the point PA:

~RA =
X

8AB2E

~FBA (11)

If PA is the point associated with the vertex A in a particular iteration and
~RA is the force exerted on it, the algorithm moves the point to a new location
P 0
A de�ned as follows:

P 0
A = PA + "~RA (12)

where " is a constant, 0 < " � 1.
At last, the algorithm starts again with a random layout and moves the

points according to Equation 12 in a given number of iterations or until the
layout convergences to an equilibrium. In each iteration, all of the tension
forces are computed in the �rst step, then all of the points are moved in the
next step without recomputing the forces. The following is a general description
of the algorithm in pseudocode:

for a number of iterations

for all A in V

compute RA;

for all A in V

PA = PA + epsilon * RA;

In this algorithm, the tension force in every vertex is computed based on
the current layout before any of them is moved. This is the major di�erence
between this algorithm and the previous ones introduced in Section 2.2, that
move one point at a time and reevaluate the situation after each of them.

4 Experimental Results

We have conducted our experiences with two sets of problems, the �rst one
containing 10 weighted graphs for which there is at least one known solution
to the problem, and the second one containing 10 graphs for which an exact
solution probably doesn't exist.

In the �rst set, the graphs have been generated in 3 steps:

� the unweighted graph has been generated by random;

� we have generated a random bounded 3D layout for the graph;
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Table 1: Average results in 1000 iterations for graphs with existing solution

Graph Total Error Total TV Norm
Initial BFS RE TV

dg30 9315.06 182.603 290.914 212.392 0.672
dg40 16406.87 60.014 230.970 68.650 0.231
dg50 26833.27 278.409 389.686 256.735 0.001
dg60 49896.58 1249.940 895.733 986.746 0.000
dg70 99540.28 780.534 998.758 208.130 3.259
dg80 117435.83 4.393 3.501 0.125 0.004
dg90 133947.17 6.330 1807.242 677.908 0.049
dg100 197523.57 3437.070 4466.200 442.295 0.449
dg125 289228.47 1732.634 2935.625 95.737 1.701
dg150 389771.23 34.621 4.835 0.406 0.009
dg175 475668.2 47.941 8077.074 0.470 0.009
dg200 670394.55 7.224 0.217 0.605 0.009

� the weights in the graph have been computed as the distance between the
points assigned to vertices composing each edge.

For the second set, both the unweighted graphs and the weights have been
generated randomly. From the results of the various trials on these graphs we
can deduce that by generating the weights this way we have introduced several
conicts with Equation 8. Thus, there is no exact solution for these problems.

The results from the �rst set of problems are encouraging. All of the methods
have converged to a solution very close to an exact one within a number of
iterations depending on the size of the graph and on the number of connections.
A higher number of connections can increase the speed of the convergence.

Table 1 shows the results of the three methods on the �rst set of problems.
The graphs are named after their number of vertices. The numbers represent the
total error in the graph after 1000 iterations as an average over 10 di�erent trials
with di�erent seeds for the pseudo random number generator. The � parameter
is equal to 0.005 for these results. Higher values have caused the tension vector
algorithm to diverge.

The last column in the table shows the total sum of the norms of the tension
vectors in each vertex of the graph. We have included this column in the table
because it illustrates that the algorithm in this case may converge to an equi-
librium solution that does not minimize the total error in the graph. It would
represent a physically unstable equilibrium. In these cases, the system has been
stabilized, but any small perturbation in the position of one of the vertices could
result in the system becoming unstable and converging to a di�erent solution.

Table 2 shows the total error from Table 1 as a percentage of the sum of
all of the weights in the graph. From this table we can notice that the error is
less that 3% in all of the cases, and at least half of the time less than 1%. This
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Table 2: Total error in 1000 iterations as percentage of the total weight in the
graph, existing solution

Graph BFS RE TV
dg30 1.48% 2.36% 1.72%
dg40 0.36% 1.39% 0.41%
dg50 0.80% 1.12% 0.74%
dg60 2.06% 1.48% 1.63%
dg70 0.64% 0.82% 0.17%
dg80 0.00% 0.00% 0.00%
dg90 0.00% 1.02% 0.38%
dg100 1.40% 1.82% 0.18%
dg125 0.46% 0.77% 0.03%
dg150 0.01% 0.00% 0.00%
dg175 0.01% 1.26% 0.00%
dg200 0.00% 0.00% 0.00%

means that all of the algorithms have found a solution that is more than 97%
precise.

We can also remark from this table that the tension vector algorithm is in
general more precise than the other two methods. The situations in which this
is not the case are most probably due to the convergence of the graph to an
unstable equilibrium solution. The criteria for deducing this is the fact that the
sum of the norms of all the tension vectors in the graph is very small in these
situations.

Table 3 shows the results of the three methods on the set of problems with
no solution. The last column has the same meaning as before, showing that even
if the solution found by the tension vector algorithm is far from being exact, it
still represents an equilibrium point for the system.

Table 4 shows the total error in Table 3 as the percentage of the sum of all
of the weights in the graph.

From this second set of results we can see that although there is no solution
to these problems, all of the methods have found a graph layout that is much
closer to the constraints than the original one. The third method also generates
more precise solutions than the other for these problems, and the di�erence is
even more visible than for the other set of problems. We can also notice from
the last column in Table 3 that the tension vector method has generated layouts
that are quite close to an unstable equilibrium solution.

To illustrate the behavior of the algorithms, we have plotted the average total
error as it evolves through the �rst 500 iterations. Figures 4, 5, and 6 show these
charts for the set of problems with existing solution, for the breadth-�rst scan,
random edge, and tension vector algorithms respectively. Figures 4, 5, and 6
show the same charts for the set of problems with non-existing solution.
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Table 3: Average results in 1000 iterations for graphs with non-existing solution

Graph Total Error Total TV Norm
Initial BFS RE TV

ukn50 8177.43 2171.060 2278.012 2082.645 0.106
ukn60 13326.01 3988.101 4115.643 3871.154 0.308
ukn70 27483.10 9714.540 9640.596 9477.518 8.149
ukn80 32838.28 11498.750 11547.960 11282.030 8.549
ukn90 38774.58 13357.580 13412.910 13106.140 7.474
ukn100 53859.34 20306.400 20338.950 19842.180 8.221
ukn125 82358.92 31329.290 31348.580 30742.930 8.768
ukn150 110082.90 42273.580 42115.450 41624.430 8.659
ukn175 136130.17 54228.630 54227.700 53380.870 9.513
ukn200 191138.27 77473.520 77285.360 76503.800 12.191

Table 4: Total error in 1000 iterations as percentage of the total weight in the
graph, non-existing solution

Graph BFS RE TV
ukn50 27.27% 28.62% 26.16%
ukn60 29.98% 30.94% 29.10%
ukn70 37.45% 37.17% 36.54%
ukn80 36.75% 36.91% 36.06%
ukn90 37.19% 37.35% 36.49%
ukn100 38.79% 38.85% 37.90%
ukn125 40.29% 40.31% 39.53%
ukn150 41.16% 41.01% 40.53%
ukn175 41.52% 41.52% 40.87%
ukn200 42.19% 42.08% 41.66%
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Figure 4: Average total error for BFS in 500 iterations, existing solution

Figure 5: Average total error for RE in 500 iterations, existing solution

From these �gures we can notice that the total error decreases very fast in
the �rst few iterations, and then it's evolution is much slower for both sets of
problems. To illustrate this phenomenon, Figure 10 shows the average total error
for the second set of problems for the tension vector method in 200 iterations.
This �gure shows that in the 20 �rst iterations, the total error is adjusted a lot
more than in the 180 next iterations for all of the problems.

Finally, Figure 11 shows the evolution of a graph with 125 vertices and
3000 edges through 1000 iterations under the tension vector algorithm and the
layout of the graph at various stages of the computation. The edges are color
coded with the following meaning: red for edges that are too long (the distance
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Figure 6: Average total error for TV in 500 iterations, existing solution

Figure 7: Average total error for BFS in 500 iterations, non-existing solution

between the points is greater than the weight of the edge), blue for edges that
are too short, and yellow for edges of the right length. The images have been
created in OpenGL using the DataViewer package [17].

4.1 Combining Methods

The previous results have shown that the tension vector algorithm is the one
generating the most consistent layouts. Still, this method has a major disadvan-
tage which is that for relatively large graphs (with more than 50 vertices), the
algorithm diverges for values of the parameter " that are not small enough. In
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Figure 8: Average total error for RE in 500 iterations, non-existing solution

Figure 9: Average total error for TV in 500 iterations, non-existing solution

our example, the maximal value of " that we could use was 0.005. This means
that although the algorithm can build quite precise layouts, the limitation on
the value of " imposes a longer execution time to achieve to a certain degree of
precision.

The breadth-�rst scan method on the other hand has never presented diver-
gence problems, which means that we can use any value for ". Higher values of
the parameter lead to faster convergence of the layout to a given precision.

The last idea that present in this paper is to combine the two algorithms to
take advantage of the strong points for each of them. We have performed a new
set of experiments using 2 graphs with existent solution and 2 graphs with non-
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Figure 10: Average total error for TV in 200 iterations

Table 5: Average results with the combined method in 1000 iterations

Graph BFS TV Combined
dg100 634.69 442.30 213.39
dg200 0.46 0.6 0.38
ukn100 19890.52 19842.18 19614.77
ukn200 76758.73 76503.80 75779.31

existent solution, with 100 and 200 vertices respectively. We start by applying
the breadth-�rst scan method for 900 iterations with " = 0:05, then we continue
with the tension vector method for another 100 iterations with " = 0:005.

Table 5 compares the results of this last method with the breadth-�rst scan
algorithm on 1000 iterations with " = 0:05, and with the tension vector algo-
rithm also on 1000 iterations with " = 0:005. From these results we can see
that for the same amount of computation time, we can generate more precise
layouts by combining the two methods. This also means that to attain a given
precision, the combination of the two algorithms can work faster.

5 Topologies

We have seen that when the graph has a consistent layout, all of the algorithms
can �nd approximate solutions with good precision. The next question we can
ask is, when we start with a particular known layout for a graph, and we set
the weights to be consistent with the Euclidian distance between the vertices
in this layout, what is the chance of �nding this exact con�guration by any of
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Figure 11: Evolution of a graph layout in 1000 iterations with TV

these algorithms?
An important observation is that if we �nd a solution to the problem, then

we can also �nd an in�nity of them by applying any isometric geometrical trans-
formation to the original solution. Thus, the question becomes, what constraints
can we impose on the structure of the graph and on the initial layout such that
the solution we obtain is equivalent to the original solution modulo an isometric
transformation?

We have experimented with several possible topologies for the original graph
layout and compared them from a strictly visual point of view to the layouts
generated by our algorithms.

Figure 12 shows on the left side a graph with 150 vertices and 1200 edges
that is originally organized in a spiral. The image on the right side represents a
solution found by the tension vector algorithm in 10000 iterations with an ep-
silon of 0.0005. From this �gure we can notice a visual resemblance between the
two �gures, although they are probably not quite equivalent (by an isometry).

Figure 13 shows on the left side a graph with 100 vertices and 2000 edges
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Figure 12: Original spiral layout and the solution found by TV

that is originally organized in a clustered layout. The vertices in each cluster are
much closer to each other than they are to other clusters. What appears as one
vertex in the �gure is actually a whole cluster. The image on the right hand side
represents a solution found by the tension vector algorithm in 10000 iterations
with an epsilon of 0.0005. We can notice that the algorithm has reconstructed
the cluster organization of the graph and the result is quite similar to the original
one.

Figure 13: Original cluster layout and the solution found by TV

In the next two examples we can see two graphs for which the solution found
by our algorithm is clearly very di�erent from the original one. Figure 14 shows
a graph with 227 vertices and 471 edges for which the original layout is on a
sphere. Figure 15 shows a graph with 200 vertices and 400 edges, and with an

19



original layout on a torus. The images on the right show solutions found by the
tension vector algorithm in 10000 iterations with an epsilon of 0.0005. We can
see that in both cases, the solution found by our algorithm looks nothing like
the original layout of the graph.

Figure 14: Original sphere layout and the solution found by TV

Figure 15: Original torus layout and the solution found by TV

One of the factors that could inuence the resemblance between the original
layout and the iterated solution is the number of edges in the graph. A higher
number of edges for the same number of vertices imposes more geometrical
constraints that restrict the number of non-equivalent solutions.

A second factor of inuence is the exibility of the original layout. In the
case of the sphere and torus graphs, the vertices are in general linked to a limited
number of the their close neighbors. As a result, we could deform the graph in
many ways without modifying the distance between the vertices. This implies
that there exist a large number of non-equivalent solutions.

Many of the existing force-based methods for building graph layouts, includ-
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ing the spring method, are taking into consideration repulsion forces between
non-adjacent vertices in the graph. Part of our future research will be to incor-
porate this component in our methods as a constraint for building consistent
graph layouts maximizing the enclosed volume. This could result in �nding the
original layout in the cases of the ellipsoid and torus topologies since the original
layout is on a geometrical �gure with this property.

6 Conclusion

In this paper we have presented three algorithms that aim to build graph layouts
that are consistent with the weights in an undirected graph. All of the algo-
rithms start with a random layout that they improve by iteratively decreasing
the amount of error on the edges. All of them are based on the idea of attrac-
tion and repulsion forces between the vertices based on the Euclidian distance
between the points and the weights. This idea is similar to the spring algorithm
and other force-oriented methods.

The �rst two algorithms, breadth-�rst scan and random edge, modify one
vertex at a time based on the information from one edge the vertex belongs to.
They are robust methods that can be applied with a large range of choices for the
parameters. The third method, named the tension vector algorithm, considers
all of the edges associated with each vertex and moves all of the points in one
step before recalculating all of the tension forces.

The experimental results have shown that all of the methods can generate
consistent layouts with a precision of over 97% if the problem is solvable. In the
case where it is not possible to generate a consistent layout, the algorithms can
build con�gurations minimizing the total error or even �nd equilibrium solutions
in the case of the tension-vector algorithm.

The best results clearly belong to the tension vector algorithm, although the
phenomenon of divergence occurring in some cases makes the other methods
valid alternatives to it. Finally, we have shown that combining the strength of
several algorithms we can generate more precise layouts faster.
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