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In a retinal image, contours belonging to a figure of interest may be intermixed with other contours (caused by 
occlusion, camouflage, low contrast, etc.), making difficult the identification of figure contours and thus the 
figure itself.  In psychophysical experiments, we found that identification of a figure is facilitated by:  
differences in relative contour orientation, relative contour curvature, and relative contour length between 
contours that belong to the figure and those that do not.  In short, a difference in any contour property seems to 
facilitate correct identification of a figure.  A computational model, based on the exponential pyramid 
architecture, was constructed and model simulations of several conditions from the psychophysical experiments 
were performed.  A critical aspect of the model is that it performs contour classification by using statistics 
computed from the entire image.  Model simulations accounted well for the results of 11 experimental 
conditions, using just one free parameter.  These results suggest that the human observer uses global features to 
make local contour classification decisions in the image and that the exponential pyramid architecture can 
adequately model perceptual mechanisms involved in figure-ground segregation. 
 
Categories and Subject Descriptors: I.4.6 [Image Processing and Computer Vision]: Segmentation – Edge 
and feature detection; I.2.10 [Artificial Intelligence ]: Vision and Scene Understanding – Perceptual reasoning; 
J.4 [Computer Applications]: Social and Behavioral Sciences - Psychology 
General Terms: Theory, Algorithms, Experimentation 
Additional Key Words and Phrases: pyramid, computational vision, figure-ground segregation, perceptual 
organization, Gestalt, psychophysics, contour classification 
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1. INTRODUCTION  

Figure-ground segregation refers to the ability of the human visual system to:  (a) group 

one or more regions in the retinal image that potentially correspond to an object and (b) 

separate this grouping from other regions which compose the background or which form 

other objects. (A closely related problem in computer vision is image segmentation, 

where the goal is to partition a digital image into regions that may correspond to 

recognizable objects.) From the demonstration of Rubin [1915/1958] to the present, 

understanding how figure-ground segregation works has been one of the fundamental  
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challenges of perceptual psychology. The human visual system is quite effective at 

performing figure-ground segregation. This is certainly true when the visual scene 

contains just a single object in front of a homogeneous background, but it is also true for 

more complex images. Consider Figure 1 – it is not difficult to perceive the figure (a car) 

although it is partially occluded by a fence (as is a second piece of machinery) and 

although the background is composed of varying textures corresponding to pavement, 

grass, trees, bushes, and part of a building. Figure 2 may be more challenging, yet it is 

possible to perceive the figure (a Dalmatian), even though the region corresponding to the 

Dalmatian and the region corresponding to the background are both composed of black 

and white patches. 

      

Figure 1.  Fence partially occludes car in visual scene.        Figure 2.  A Dalmatian.  Image by R.C. James. 

Early attempts [Rubin 1915/1958; Koffka 1935] to explain figure-ground segregation 

were largely descriptive; unfortunately there has been little progress since then towards 

an explanation [Palmer 1999]. Nevertheless, a typical presumption has been that the 

Gestalt ‘laws of perceptual organization’ [Wertheimer 1923/1958] play a role in figure-

ground segregation. The Gestalt ‘laws’ demonstrate conditions under which distinct 

elements in a retinal image may be grouped together to form larger structures (e.g., 

perhaps even a figure of interest). Contours represent one possible type of ‘element’ in a 

retinal image1. Contours in a retinal image arise from figure boundaries in the visual 

scene (but may also be due to shadows, background textural elements, etc.).  

Understanding how pieces of image contour ‘go together’ to form larger contours is thus 

likely beneficial to understanding how a figure in the retinal image may be perceived. 

There are a number of Gestalt laws of perceptual organization – several will now be 

described. The law of proximity states that, other things equal, elements near to one 

another in an image have a greater tendency to be grouped together than if they were 

farther apart. The law of similarity states that similar elements tend to be grouped 
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together. The law of good continuation states that contour groupings where resulting 

curves are smooth are preferred over those where resulting curves abruptly change 

direction. The law of closure refers to the tendency to perceive an image region enclosed 

by a contour as a figure, separate and somehow different from the surrounding 

background, even though the regions inside and outside of the contour may be of the 

same substance. This can occur even though the contour may be somewhat fragmented 

[Koffka 1935]. While original formulation of the Gestalt laws largely relied on 

demonstrations [Wertheimer 1923/1958; Koffka 1935], recent work has aimed at 

providing more rigorous quantitative explanations of these principles with regards to 

contour grouping (with respect to closure, see Elder and Zucker [1994]; with respect to 

good continuation, see Pizlo, Salach-Golyska, and Rosenfeld [1997]; Feldman [2001]; 

Geisler, Perry, Super, and Gallogly [2001]; Elder and Goldberg [2002]; with respect to 

similarity and proximity, see Elder and Goldberg [2002]). However, this recent work has 

tended to focus on how local pieces of contour are grouped into larger pieces of contour. 

With complex images, figure-ground segregation may require more than just local 

grouping of pieces of contour. It may also require that all visible contours of a figure be 

classified from those that do not belong to the figure (e.g., those belonging to the ground 

or to other figures). Such a requirement may entail global processing. Indeed, the 

enigmatic Gestalt idea that something about a whole guides how the parts are grouped 

into that whole [Wertheimer 1923/1958; Koffka 1935] anticipates this. 

The task of classifying contours that belong to a figure from those that do not may be 

especially challenging when occlusion is present. Consider Figure 1 again. Notice that the 

fence not only interrupts the contours of the car, but it also introduces contours in the 

image where parts of the car would otherwise appear were it not for the fence. The task of 

classifying contours that belong to a figure may also be more difficult when the figure 

appears to be fragmented or degraded, but with no (obvious) occlusion present. One 

example is camouflage, where the camouflage agent may break up the natural contours of 

a figure, while simultaneously adding new contours within the boundaries of the figure. 

Another example is low contrast between parts of a figure and the background. For 

instance, when the background is dark and parts of a figure are covered by shadows, 

those parts may appear to blend in with the background, resulting in omission from the 

image of sections of figure contour and introduction of spurious new contours that 

correspond to shadow boundaries. 
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The occlusion literature, in particular, has long recognized the challenge posed by 

image contours that do not belong to a figure of interest – specifically image contours 

introduced by an occluder [Nakayama, Shimojo, and Silverman 1989; Kellman and 

Shipley 1991; Brown and Koch 1993; Grossberg 1994]. For example, a crucial 

component of the theory of Nakayama et al. [1989] is that the contours “intrinsic” to an 

occluded figure must be discriminated from those “extrinsic” to it (i.e., those belonging to 

the occluder). Once the image contours intrinsic to the figure are classified as such, they 

can be further subjected to grouping before being ultimately submitted to a recognition 

process. Their theory claimed that this classification of image contours into intrinsic 

(belonging to figure) versus extrinsic (belonging to occluder) is performed on the basis of 

relative depth of the two types of contours in the visual scene. To illustrate, assume an 

observer is viewing the scene depicted by Figure 1. The retinal image produced would 

contain contours of the occluding fence that intersect with contours of the occluded car. 

They point out that in nature an occluder is always closer to the observer than the figure 

which it occludes. They argue that such depth information is available early in vision and 

that it is used by the human visual system to classify the contours of the occluded figure 

apart from those of the occluder. (In cases where the ‘visual scene’ is simply a picture, 

they conjecture that T-junctions provide the depth information.) While it seems plausible 

with respect to occlusion, this theory (and other contour-based theories of the perception 

of partially occluded figures) cannot account for perception of degraded or fragmented 

figures (see Figure 2 for an example). In such cases, there is typically no depth 

information with which to classify contours as belonging or not to the figure. Yet, it is 

often possible to perceive such part ially visible figures. Perhaps then there are other 

contour properties, in addition to depth, that enable the human visual system to classify 

image contours as belonging or not to a figure. 

Contour classification is just one task that may be required for perception of partially 

visible figures. Another is contour interpolation. Observe that when a figure is partially 

visible, portions of its bounding contour are typically missing and therefore must be 

interpolated. Shipley and Kellman [1992] proposed that the perceptual strength of 

interpolation is a function of the ‘support ratio’ of the resulting contour. Support ratio is 

defined as the total length of physically present pieces of a contour divided by total 

length of the physically present and interpolated pieces of a contour. This idea resonates 

with common sense and indeed support ratio is commonly accepted (but see Singh, 

Hoffman, and Albert [1999], for an alternative view). However, their experiments used 
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square figures, where each side of a square had an identical gap in its contour [Shipley 

and Kellman 1992]. Does support ratio account for perceptual strength of a figure when 

the figure is less simple and the pattern of its contour fragmentation is random? 

In this paper, we first report new psychophysical results which demonstrate that the 

human visual system can classify contours as belonging or not to a figure on the basis of 

contour properties other than depth (e.g., orientation, curvature, length). We then describe 

a new computational model which partitions a set of image contours into those which 

belong to a target figure and those which do not on the basis of a given contour property. 

This model is based on the exponential pyramid architecture from the computer vision 

literature. A pyramid facilitates both fine-to-coarse and coarse-to-fine processing of an 

image [Jolion and Rosenfeld 1994]. Our proposed model exploits both properties: it uses 

fine-to-coarse (bottom up) processing to efficiently compute image-wide statistics on 

various properties of image contours. It then uses coarse-to-fine (top down) processing to 

classify local image contours on the basis of global information derived from these 

statistics. Figure-ground segregation for complex images (where the figure is partially 

occluded or otherwise appears degraded) seems to require use of global image 

information, yet efficient psychologically plausible methods for extracting such 

information have not been demonstrated previously. The important aspect of the 

proposed model is that it shows how global image information can be efficiently 

determined and used to make local processing decisions. Finally, we report the results of 

model simulations of psychophysical experiments. These simulations provided a test of 

the psychological plausibility of our new model. Additionally, these simulations allowed 

evaluation of the role of support ratio in figure-ground segregation. 

 

2. PSYCHOPHYSICS  

In order to test whether the ‘intrinsic’ contours of a figure must be classified separately 

from contours ‘extrinsic’ to the figure and whether such classification can be performed 

with contour properties other than relative depth, we used stimuli such as the one shown 

in Figure 4(a), where not all fragments of a particular color (here black) belong to the 

target figure. (Figure 4(a) is a sample image from one of our experimental conditions.) 

The target figure in this particular stimulus is an upside-down, asymmetric ‘U’, 

positioned slightly left of center. The stimulus contains a number of white and black 

distractors. When a white distractor overlaps the black target figure, it ‘erases’ part of the 

target figure. When a black distractor overlaps the black target figure, it distorts the shape 
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of the figure somewhat. Note that by using white and black distractors, we minimized 

(although did not eliminate) the role of region information: a white point in the image 

could be either in the interior or exterior of the figure. Similarly, a black point could be 

either in the interior or exterior of the figure. Minimizing the role of region information 

may help in isolating the specific role (if any) of contour information. 

 

2.1 Experiment 1:  Effects of Contour Orientation and Curvature 

If classification of intrinsic vs. extrinsic contours and subsequent removal of extrinsic 

contours is critical for perception of partially visible figures to occur, then any cue which 

distinguishes between these two types of contours should lead to such perception. From 

the “pop out” phenomenon described by Treisman [1986], we know that a straight 

oblique contour would pop out from a field of straight horizontal and vertical contours. 

Similarly, a curved contour would pop out from a field of straight horizontal and vertical 

contours. Thus if a target has straight horizontal and vertical contours, while distractors 

have either straight oblique or curved contours, then the target figure should be readily 

perceived. 

2.1.1 Method. 

Subjects.  Three subjects (GW, ZP, MS), including both authors, participated. GW 

was naive with regards to the hypothesis being tested. All subjects had practice in the task 

prior to the experiment such that their performance in the task was asymptotic prior to the 

start of the experiment. Subjects ZP and MS were myopes and used their corrective 

lenses. ZP and MS were experienced as subjects in psychophysical experiments. Viewing 

was monocular from a distance of 82 cm. A chin-forehead rest supported a subject’s 

head. 

Stimuli.  Each stimulus contained one of the five black figures shown in Figure 3 

against a white background, with distractors randomly added over the entire image. Each 

of the figures in Figure 3 consisted of four 200x100 pixel rectangles. Two types of 

distractor were used – white and black. For each stimulus image, there were always an 

equal number of white and black distractors, and they were always the same size. This 

experiment consisted of six conditions characterized by distractor size (small, large) and 

distractor shape (diamond, circle, square). Thus, the only thing that varied between the 

six experimental conditions was the nature of the distractors. The total distractor area 

(TDA) was held constant across the six conditions. The TDA for both white and black 

distractors in each condition was approximately 540,000 pixels (the actual area occupied 
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by distractors in a stimulus image could be less, due to distractors that overlap one 

another, for example). Stimuli were presented on a computer monitor, with 1280x1024 

resolution (39.1 cm. x 29.5 cm.). A sample stimulus from each of the six conditions is 

shown in Figure 4. 

 
Figure 3.  Target figures used in experiments (‘normal’ orientation). 

 

 

           (a)    (b) 
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Figure 4.  Sample stimuli from six experimental conditions of Experiment 1. 

Procedure.  The order of the six conditions was random and different for each subject.  

In the two square distractor conditions, the distractor contours did not differ in either 

orientation or curvature from the contours of the target figure.  In the two diamond 

distractor conditions, distractor contours differed in orientation from the contours of the 

target figure, while in the two circle distractor conditions, distractor contours differed in 

curvature from the contours of the target figure. 

Each experimental condition consisted of 500 experimental trials, which were 

preceded by 50 practice trials (subjects had the option to repeat the practice set as many 

times as they wished and they were informed of their performance after each such set).  

An identification task was used. 
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Each trial began with a fixation cross at the center of the screen.  When the subject 

pressed the mouse button, a stimulus was presented for 100 msec.  A stimulus contained 

one of the five figures shown in Figure 3 or its 180o-rotated (upside down) version.  A 

figure was presented amid white and black distractors, as described above.  Half of the 

trials contained a figure in its normal orientation and the other half in the rotated 

orientation.  Because location of the target figure in a stimulus varied randomly across 

trials, as did placement of the white and black distractors, the stimulus in each trial was 

unique.  After the stimulus disappeared, the subject was shown images of the normal and 

the 180o-rotated versions of the figure (without distractors) and was asked to identify 

which one had been presented in the stimulus.  Subjects were given feedback at the end 

of each trial as to whether the normal or rotated version of the figure had been presented.  

When a ‘Next Trial’ button was clicked, the fixation cross reappeared, signaling the start 

of the next trial.  Average proportion correct was used as the performance measure. 

2.1.2 Results and Discussion.  The results are shown in Figure 5. Performance is 

clearly better when either diamond or circle distractors are used than when square 

distractors are used. An interesting result is that while performance drops off with 

increasing distractor size in the case of square distractors, this decrease in performance is 

not as large (if present at all) when either diamond or circle distractors are used. This 

suggests that large distractors per se do not remove more informative parts of the figure 

than small ones. 

The superior performance in the case of circle or diamond distractors supports the 

hypothesis that separation of extrinsic from intrinsic contours is critical for perception of 

partially visible figures, since the distractors were designed to lead to easy classification 

of the two types of contours. These results also show that depth cues are not required to 

classify those contours that are intrinsic to the figure from those that are extrinsic. 

 

2.2 Experiment 2:  Effect of Contour Length 

In Experiment 1, subjects performed much better when diamond or circle, rather than 

square, distractors were used. Yet in the case of square distractors, subject performance 

was still quite good, as long as the square distractors were small. Perhaps the human 

visual system can distinguish the contours that belong to a figure from those that do not 

based on contour length. Indeed, in the small square distractor condition, there was a 

large difference in length of the contours of a distractor vs. those of a target figure, while 

in the large square distractor condition this difference was smaller. Under this hypothesis,  
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Figure 5.  Results of Experiment 1.  The roles of contour orientation and curvature. 

performance in the square distractor conditions should be worse (and it was) than in the 

diamond or circle distractor conditions because relative contour length would be a less 

reliable cue than either relative contour orientation or relative contour curvature for 

classifying contours as intrinsic or extrinsic to the partially visible target figure. To 

understand why, recall that distractors are randomly placed on a stimulus image. Even in 

the case of small square distractors (with short contours), several white distractors could 

overlap the black target figure in such a way as to leave short pieces of contour of the 

figure. This would make classification between intrinsic and extrinsic contours on the 

basis of relative contour length somewhat more difficult than such classification on the 

basis of relative contour orientation or relative contour curvature. 

2.2.1 Method. 

Subjects.  Three subjects participated (SG, ZP, MS), including the authors. SG was 

naive with regards to the hypothesis being tested. All subjects had practice in the task 

prior to the experiment such that their performance in the task was asymptotic prior to the 

start of the experiment. All subjects were myopes and used their corrective lenses. 

Viewing was monocular from a distance of 82 cm. A chin-forehead rest supported a 

subject’s head. 

square symbol    = square distractors 
circle symbol      = circle distractors 
diamond symbol = diamond distractors
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Stimuli.  Stimuli were like those used in Experiment 1, with the exception that all 

conditions in Experiment 2 used stimuli with square distractors. The primary factor 

manipulated in Experiment 2 was distractor size (i.e., extrinsic contour length). Three 

sizes of distractor were used: 40 x 40 pixels, 63 x 63 pixels, and 100 x 100 pixels. The 

values 40, 63, and 100 represented a linear increase of the size ratio (i.e., 63/40 ≅ 

100/63). Total area used by distractors (TDA) was another factor manipulated in the 

experiment. Obviously, the greater the total area of the distractors used, the worse the 

performance should be in a figure-ground segregation task. The same TDA was used for 

both white and black distractors in a given stimulus image (as in Experiment 1). Three 

total distractor areas (TDAs) were used: 480,000, 540,000, and 600,000 pixels. These two 

experimental factors, distractor size and total distractor area, were orthogonal. For each 

total distractor area, there were three separate experimental conditions, one for each 

distractor size. For example, for a given total distractor area, there was a session with a 

large number of small distractors, a session with an intermediate number of intermediate-

sized distractors, and a session with a small number of large distractors. 

Procedure.  There were 9 experimental conditions representing all combinations of 

the 3 total distractor areas and 3 distractor sizes. The order of conditions was random and 

different for different subjects. In all other aspects, this experiment was identical to 

Experiment 1. 

2.2.2 Results.  The results are shown in Figure 6. The abscissa represents size of the 

distractor, the ordinate represents average proportion correct. Individual curves represent 

different total distractor areas. The result of primary interest is represented by the 

downward slope of the curves: as distractor size increases, average proportion correct 

decreases. Since each curve represents constant total distractor area (many small 

distractors vs. fewer large distractors), the downward slope of the curves cannot be 

attributed to the 'amount’ of the figure occluded. Instead, it may represent the effect of 

the relative scale (length) of intrinsic vs. extrinsic contours. The effect of the total 

distractor area itself is represented by the difference in heights among the curves – 

average proportion correct decreases with increasing total distractor area. 

A  3-factor ANOVA with total distractor area, distractor size, and target figure as 

factors corroborates these observations. The ANOVA showed a main effect of total 

distractor area, (F[2,4]=64.36, p=.0009) and a main effect of distractor size, 

(F[2,4]=92.95, p=.0004). There was also a main effect of target figure, (F[4,8]=34.51, 

p=.0001) and an interaction between total distractor area and target figure (F[8,16]=3.34, 
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p=.019). There were no other significant interactions. The target figure effect is related to 

the fact that all subjects had worse performance on two of the target figures than on the 

others, and they all had better performance on one of the target figures than on the others. 

These differences across target figures led to large error bars in Figure 6. The total 

distractor area/target figure interaction may have the following explanation. For the 

difficult target figures, performance may have already been poor enough in the case of 

the smallest total distractor area that an increase in this area did not cause much more of a 

drop in performance. In other words, the difficult target figures showed a 'floor' effect. 

 

 
Figure 6.  Results of Experiment 2.  The role of contour length. 

2.2.3 Discussion.  In Experiment 2, two main effects were found: an effect of total 

distractor area and an effect of distractor size. The effect of distractor size (i.e., extrinsic 

contour length) is new, but the effect of total distractor area is not. Total distractor area is 

related to the concept of support ratio [Shipley and Kellman 1992]. Support ratio is the 

length of the visible (physically present) portion of a contour divided by total contour 

length. It has been shown that as the support ratio  of an interpolated contour increases, 

perceptual strength of the interpolated contour also increases [Shipley and Kellman 

1992]. When a distractor which is of the same color as the background overlaps a contour 

of a figure, it erases part of that contour and thus reduces its support ratio. For larger total 



 12 

distractor area more contour will be removed. Therefore, support ratio decreases as total 

distractor area increases. As shown by the difference in heights of the three curves for 

each subject in Figure 6, the support ratio effect reported by Shipley and Kellman [1992] 

is confirmed. But the effect of distractor size found in our experiment cannot be 

accounted for by a support ratio explanation. Each curve in Figure 6 represents a constant 

total distractor area yet reflects decreasing performance with increasing distractor size. 

Figure 6 shows that performance can even be better for a lower support ratio, when the 

distractor is sufficiently small. As an example, the average proportion correct (for all 

subjects) is .79 in the small distractor/large total distractor area condition and .70 in the 

large distractor/small total distractor area condition. Therefore, while support ratio 

appears to be an important factor in the perception of partially visible figures, it is not the 

only factor, nor is it necessarily the most important one. Here, a more important factor 

may have been the distractor size (i.e., length of a distractor’s contours relative to those 

of the figure). 

Why should small distractor size lead to more success in solving this figure-ground 

segregation task? Before addressing this question, note that when a distractor is of the 

same color as the background, whenever it overlaps the boundary of the figure, it erases 

some of the intrinsic contour of the figure. On the other hand, whenever it overlaps the 

interior region of the figure (here, the black region inside the bounding contour of the 

figure), the distractor introduces contour that is extrinsic to the figure. Returning to our 

question, look at Figure 4(a). As pointed out above, small distractors are on a different 

scale than the larger target figure. As a result, straight line segments of extrinsic contours 

created by small distractors are short relative to the segments of  intrinsic contours of the 

target figure. Large distractors, on the other hand (Figure 4(b)), are closer in scale to the 

target figure and thus the length of extrinsic contours created by large distractors are 

comparable to the length of the intrinsic contour fragments. Now, imagine the 

neighborhood of a given point in the image. This neighborhood may have fragment(s) of 

the target figure, as well as part or all of one or more distractors. The distractors add 

extrinsic contour to this neighborhood while the target figure adds intrinsic contour. 

When the extrinsic contours in a local neighborhood of the stimulus image are short 

relative to the intrinsic contours (i.e., small distractors are used), this difference in length 

of the two types of contours could be used to distinguish extrinsic from intrinsic contours. 

When extrinsic contours are longer (i.e., large distractors are used), it may be more 

difficult to distinguish extrinsic from intrinsic contours. In any case, relative contour 
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length would not be as reliable a property as relative contour orientation or relative 

contour curvature, because there would typically be overlap in the population 

distributions of intrinsic contour length and extrinsic contour length. 

In order to choose a suitable cutoff point that separates the two distributions of 

contour lengths, the visual system may need to process the entire image (or a sizable part 

of it). This suggests that in using relative contour length to classify contours as intrinsic 

or extrinsic to a figure, the human visual system may need to perform global processing 

to select the cutoff length. The details of Experiment 2 pose an alternative possibility 

though.  In the small square distractor conditions, the sides of the square distractors were 

40 pixels, while the sides of a target figure (prior to occlusion) were considerably longer 

than this. It would have been natural then for subjects to choose a cutoff value of 41 

pixels if relative contour length was the property used for contour classification. In each 

small square distractor experimental condition, the session was preceded by a numb er of 

practice trials. Thus, subjects “knew” beforehand about the appropriate cutoff to use for 

classification purposes in the experimental trials that followed. It is possible, then, that 

subjects did not detect a cutoff value in each experimental trial from the visual 

information present in the trial, but instead used a pre-determined cutoff value. A control 

experiment was performed to test the hypothesis that subjects have the perceptual 

capability to determine the cutoff value in a trial from the stimulus image itself and thus 

are not required to use memory. 

2.2.4 Method. 

Subjects.  ZP and MS served as subjects in this control experiment. 

Stimuli.  Small square distractor stimuli and large square distractor stimuli, as before, 

were used. Total distractor area was held constant across distractor size. MS used TDA of 

600,000 pixels, and ZP used TDA of 480,000 pixels. These values of TDA were used 

because they produced very similar performance in the two subjects in Experiment 2 – 

see Figure 6. 

Procedure.  Each subject ran two sessions apiece. Each session contained 500 

experimental trials, preceded by 40 practice trials. Previously, a single session contained 

either all small square distractor trials or all large square distractor trials, but not both. 

Here, each session contained 250 small distractor trials and 250 large distractor trials.  

Individual trials were randomly assigned as either a small or large distractor trial. Thus, 

in the two sessions combined, each subject was tested in a total of 500 small distractor 

trials and 500 large distractor trials. All other details were the same as for the other 
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experiments. In these sessions, there was no single cutoff value that could produce 

efficient separation of intrinsic from extrinsic contours for both small and large distractor 

trials. Therefore, if a subject uses expectation/memory to determine the cutoff value, the 

performance in this experiment should be worse as compared to the performance in the 

corresponding conditions in Experiment 2 (TDA of 600,000 pixels in the case of MS and 

480,000 pixels in the case of ZP), where small and large distractors were tested in 

separate sessions. On the other hand, if the cutoff value is computed from the visual 

information present in the stimulus, performance in this experiment should be the same as 

in Experiment 2. 

2.2.5 Results and Discussion.  Table 1 shows the results. If subjects simply used a 

pre-determined cutoff value for classification and were unable to determine a cutoff value 

from the stimulus image from trial to trial, performance should have been lower here than 

it was in Experiment 2. On the other hand, if the cutoff value was determined visually in 

each trial, performance should not have been lower than that in Experiment 2. Table 1 

shows that the latter case was true. These results suggest then that the separation of 

intrinsic from extrinsic contours is done based on a cutoff value derived from global 

processing of the visual stimulus, rather than from memory. 

Table 1: Comparison of performance between Experiment 2 and Control Experiment for small square 

distractors and for large square distractors.  The numbers in parentheses represent standard errors.  

______________________________________________________________________ 

Conditions   Exp. 2 proportion correct     Control exp. proportion correct  

______________________________________________________________________ 

Small Squares 

 ZP      .798          (.053)   .774           (.055) 

 MS      .804          (.025)   .832           (.027) 

Large Squares 

 ZP      .610          (.019)   .676           (.030) 

 MS      .630          (.020)   .682           (.029) 
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3. MODEL DESCRIPTION  

The psychophysical results suggest that in order for perception of a partially visible 

figure to occur, contours belonging to the figure must be distinguished from those that do 

not. Any contour property that facilitates such classification may be used. In addition to 

depth [Nakayama et al. 1989], some contour properties that may be used for such 

classification are relative contour orientation (Exp. 1), relative contour curvature (Exp. 

1), and relative contour length (Exps. 1 & 2). Further, the contour property used for 

classification can be derived from global analysis of the image by the human visual 

system. To test this theory, we developed a computational model based on the 

exponential pyramid architecture. Testing the new model required three modules: 

(a) an input module for extracting contours from an image, 

(b) the exponential pyramid-based model that implements our theory, 

(c) a template matching module, which takes the output set of contours from (b) 

    and matches these against normally-oriented and 180o-rotated templates of a     

    figure, in order to determine the model’s response to a given stimulus image. 

Of these three modules, only (b) is central to the theory. The exponential pyramid detects 

the cutoff value of the contour property that partitions image contours into those that 

belong to the figure and those that do not. The input module (a) is needed to supply the 

exponential pyramid with the contours from an image. The template matching module (c) 

is needed in order to evaluate the performance of the exponential pyramid in classifying 

the image contours. Details of this evaluation will be given in the next section. The 

remainder of this section describes the main aspects of the exponential pyramid-based 

model’s structure and function. The input and output modules (a) and (c) will also be 

briefly described. 

 

3.1 Structure 

The exponential pyramid architecture has been analyzed and shown to possess features 

useful in modeling certain Gestalt laws of perceptual organization [Rosenfeld 1990; 

Pizlo, Salach-Golyska, and Rosenfeld 1997].  A typical structure (the one used here) is a 

"non-overlapped quad-pyramid".  Assume that the bottom layer of the pyramid has n 

processing nodes.  The next layer has n/4 nodes, the one above that n/16 nodes, and so 

on.  The top layer has only one node.  Each node in a layer connects with four distinct 

'children' nodes in the immediately lower layer and one 'parent' node in the immediately 

higher layer.  Such a pyramid has (log4 n) + 1 layers.  Each node in the pyramid has 
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limited memory and processing capability.  The input image is presented to the bottom 

layer of the pyramid [Jolion and Rosenfeld 1994].  There are three characteristics of a 

pyramid: 

1.) local, parallel processing:  Different parts of an image can be processed    

     simultaneously. 

2.) multiscale:  Different layers represent different spatial scales. 

3.) hierarchical processing:  Processing can go in two directions: bottom up 

     (fine-to-coarse) and top down (coarse-to-fine). 

Each node represents a receptive field, with nodes at higher layers in the pyramid having 

larger receptive fields.  For all simulations described in the ‘Testing the Model’ section, a 

pyramid with eight layers was used. 

 

3.2 Function 

Given a set of image contours as input, the function of the exponential pyramid-based 

model is to determine whether there exists some contour property that partitions the set 

into two subsets (e.g., intrinsic and extrinsic) and, if necessary, to choose a cutoff value 

for that property. If such a property exists, the set of image contours can then be 

partitioned based on this property. For example, T-junctions can be used in classifying an 

image contour as belonging to either the nearer (occluding) or farther (occluded) figure in 

the image [Nakayama et al. 1989; Grossberg 1997]. Similarly, as the psychophysical 

results presented here show, differences in contour properties such as length (long vs. 

short), orientation (oblique vs. not oblique), and curvature (straight vs. curved) can be 

used in classifying an image contour as belonging to a (partially visible) figure or not. 

Given a small set of such candidate properties, the model analyzes statistics of these 

contour properties in the image and could decide which, if any, would best classify the 

image contours. Details of this analysis will now be illustrated with an example. 

Consider the image in Figure 7(a). Assume that relative contour length is the 

candidate property to be used for classifying contours in this image. In order for the 

proposed pyramid model to perform this contour classification, it first needs to determine 

a cutoff value for contour length that allows classifying those contours that belong to the 

figure (an upside-down, asymmetric ‘U’) from those that do not. Bottom up (or fine-to-

coarse) processing accomplishes this  in the proposed pyramid model. Bottom up 

processing begins when all image contours are input to the bottom layer of the pyramid – 

see Figure 7(b). For this example, we assume a two layer pyramid: the bottom layer has 
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four nodes or ‘receptive fields’ (as shown in Figure 7(b) by dividing the image into four 

quadrants) and the top layer consists of just one receptive field which spans the entire 

image. (For all simulations, we used an eight layer pyramid. An eight layer pyramid has 

128 x 128 receptive fields in the bottom layer.) Each receptive field in any layer applies 

the following algorithm to just those contours ‘visible’ to it; thus all receptive fields in a 

given layer may perform this processing in parallel on distinct parts of the image: 

1.) initialize histogram for each contour property (length,  
  orientation, etc.) 
 
2.) for each contour, c, visible to this receptive field: 
 - if pyramid layer ≠ top and c does not fit completely 
   in this receptive field: 
  - mark c to be ‘passed up’ to ‘parent’ cell 
 - else 
  - for each contour property (length,  

  orientation, etc.): 
   - calculate contour property value for c 
   - increment bin in contour property  

  histogram corresponding to c’s value 
 
3.) for each contour property (length, orientation, etc.): 
 - use histogram to compute variance of property value 
 - choose maxval as the smallest value greater than  

  all contour values in this receptive field 
 - if pyramid layer ≠ bottom 

  - choose cutoff value for this receptive field 

The first step, initializing contour property histograms for a receptive field, involves 

initializing each bin in a histogram to zero when the receptive field is in the bottom layer. 

For all layers other than the bottom layer, each receptive field has exactly four ‘child’ 

receptive fields in the layer immediately below (see previous section on ‘Structure’). 

Thus a receptive field in a non-bottom layer will initialize each bin in a histogram to the 

sum of the corresponding bins of its four ‘child’ receptive fields. In the second step, a 

receptive field considers each of the image contours ‘visible’ to it. In the bottom layer, 

this is literally true. In non-bottom layers, a receptive field receives just the image 

contours ‘passed up’ from its four ‘child’ receptive fields. A child passes up to its 

‘parent’ receptive field just those image contours that do not fit completely within the 

child’s receptive field. A child performs ‘histogramming’ for all other image contours in 

its receptive field. (Histogramming is a common technique used for image segmentation - 

see Horn [1986]; see Jolion and Rosenfeld [1994], for examples of histogramming in 

conjunction with pyramids). The third step in the algorithm tries to choose the cutoff 
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value for a contour property using a technique analogous to root detection [Jolion and 

Rosenfeld 1994]. This technique will now be illustrated. 

  
     (a)                    (b) 

Figure 7.  Determination of contour length property cutoff (see text for details). 

Consider the lower right hand quadrant in the ‘bottom layer’ depicted in Figure 7(b). 

Most of the contours in this ‘receptive field’ are of the same length, so the variance of the 

contour length property will be quite small. As processing proceeds to the next higher 

layer in the pyramid, the receptive field size becomes larger (here it spans the entire 

image, because in this example we consider only a two layer pyramid). Now, the parent 

receptive field contains contours belonging to a larger polygonal figure (the target) and to 

the smaller squares. Since contours belonging to the target figure tend to be longer, the 

variance of contour length is much greater than in the child receptive field (corresponding 

to the lower right quadrant of Figure 7(b)). The parent receptive field (in the top layer) 

computes the ratio of its contour length variance to that of its child. If this ratio exceeds 

some threshold, it  chooses the contour length cutoff to be just greater than the longest 

contour in the child receptive field - maxval in the algorithm. If this ratio exceeds the 

threshold for more than one child, then the minimum maxval is chosen as the cutoff for 

the parent receptive field. (We used 1.25 as the threshold for both relative contour length 

and relative contour orientation - this threshold was empirically determined in 

preliminary simulations.) In particular, note that global information is used in 

determining the cutoff for a contour property. In subsequent top down (or coarse-to-fine) 

processing, the cutoff value is used to classify image contours as belonging to the target 

figure or not2. In the section ‘Testing the Model’, we report simulation results which 

suggest that the proposed exponential pyramid-based model is psychologically plausible. 

 

3.3 Input 
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The input module applies Sobel edge detection with custom contour extraction to a 

stimulus image to find the set of image contours. Figure 8 shows some examples. As 

noted previously, the input module (and the output module described next) was built to 

facilitate evaluation of the proposed exponential pyramid model. As such, we do not 

claim that the human visual system uses Sobel edge detection to recover image contours. 

Instead, image contours could be recovered by any of the large class of image 

segmentation methods [Davies 1997; Ballard and Brown 1982; Barrow and Tenenbaum 

1986; Horn 1986]. 

 

3.4 Output 

When two types of contour are present within the image (e.g., contours intrinsic to a 

figure vs. those extrinsic to it), the output of the exponential pyramid model is a 

classification of each image contour into one of the two types (if possible). The template 

matching module receives the contours that have been classified by the pyramid as being 

intrinsic to the target figure and matches these to normally-oriented and 180o-rotated 

templates of the figure, to determine which template best matches the set of intrinsic 

contours. Again, this template matching module exists for the purpose of evaluating the 

performance of the proposed exponential pyramid model. 

(a)  

(b)  
Figure 8.  Left column shows original sample stimuli.  Right column shows results of Sobel edge detection and 

custom contour extraction.  (a) Sm all diamond distractor stimulus.  (b) Large diamond distractor stimulus.  
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4. TESTING THE MODEL 

Evaluation of the model’s performance was conceptually simple – treat the model as an 

additional subject in an experiment. Then compare its performance to that of the human 

subjects from the experiment. There was one free parameter in the model: the magnitude 

of noise in the perceptual representation of intrinsic contour. First, model performance 

was compared to human performance in an experiment testing the effect of contour 

orientation. Then, model performance was compared to human performance in an 

experiment testing the effect of contour length. The model was not tested on the effect of 

contour curvature. Recall that the performance of human subjects was high and equally 

good in the contour orientation and contour curvature cases (Experiment 1). Performance 

was high because the separation of intrinsic from extrinsic contours was quite easy in 

both cases. Therefore, it was assumed that the results from the contour orientation 

experimental conditions would be sufficient for estimation of the free parameter in the 

model. 

 

4.1 Contour Orientation 

In order to compare model performance to human performance with respect to the effect 

of relative contour orientation, we replicated the diamond conditions from Experiment 1 

with two subjects, MS and ZP. We used a total distractor area of 640,000 pixels, which is 

larger than that used in Experiment 1. Larger total distractor area made the task 

somewhat more difficult. By doing this we wanted to make sure that the subjects’ 

performance was not too close to perfect. Both subjects used the same sets of randomly 

generated stimuli. 

The model was applied to the same sets of stimuli used by human subjects. Two types 

of analysis were made for each stimulus:  (i) the intrinsic/extrinsic contour classification;  

(ii) template matching. In the template matching part, the intrinsic contours extracted 

from the image were compared to both the normal orientation template and the 180o-

rotated orientation template of the target. For each template, the total length of intrinsic 

contour matched was computed. This is called the support ratio I. Then, the difference IM 

between the support ratios for the normal and rotated templates was computed. A positive 

difference indicated the response “normal”, a negative difference indicated the response 

“rotated”. 
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If the model is psychologically plausible, there should be a systematic relationship 

between the accuracy of human response and the magnitude of IM. High positive values 

of IM, as detected by the model, should correspond to high proportions of responses 

“normal” by the human subject. Conversely, high negative values of IM should 

correspond to high proportions of responses “rotated” by the human subject. Such a 

relationship is called a psychometric function. This kind of a systematic relationship 

would suggest that the amount of intrinsic contour detected by the visual system of the 

human observer, which is the input to the decisional module of the observer, is identical 

to the amount of intrinsic contour detected (recovered) by the model. If this is indeed the 

case, then the claim that the computational methods involved in the model represent the 

perceptual mechanisms of the human observer will be supported. Details of model 

evaluation follow. 

The support ratio of a contour c is defined as: 

Ic = dc/Dc         (1) 

where Dc = total length of contour c and dc = total length of visible (physically present) 

contour for contour c. As the support ratio of contour c increases, so does the ‘perceptual 

strength’ of contour c [Shipley and Kellman 1992]. 

The model estimates Ic by superimposing the template of the target at all positions on 

the stimulus image and computing the length of the overlap between the contours in the 

image that were classified as intrinsic and the contours of the template. It takes the 

maximum value of the overlap across positions of the template and normalizes it to Dc. 

For the template at normal orientation, the normalized value (support ratio) is denoted by 

IN and for the template at the rotated orientation, the normalized value is denoted by II. 

The model then computes the difference IM: 

IM = IN – II .                      (2) 

The decision rule which determines the model’s response is given by: 

          IM < 0:  respond "rotated", 

r =     IM > 0:  respond "normal", 

          IM = 0:  respond "normal" with p = 0.5.                   (3) 

If this model is psychologically plausible, there should be a relationship between the 

value of IM, as computed by the model, and human performance. Note that IM is what the 

model detects, as opposed to what is actually given in the image. Let: 

IM = I* + ∈O(M) + ∈I(M)   ,                     (4) 
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where IM = ‘detected’ difference of support ratios, I* = ‘actual’ difference of support 

ratios, ∈O(M) ~ N(0,σ2
O(M)), and ∈I(M) ~ N(0,σ2

I(M)). ∈O(M) represents error in using 

orientation as a classification feature. ∈I(M) represents all other sources of model error. 

If σ2
O(M) = σ2

I(M) = 0 then: 

IM = I*  .                                    (5) 

This happens when classification of intrinsic vs. extrinsic contours is perfect. In such a 

case using decision rule (3) leads to the model’s 'psychometric' function, which is a step 

function. In the simulations, root detection led to perfect performance in the small 

diamond distractor condition and nearly perfect performance (497/500 = .994 correct) in 

the large diamond distractor condition. Specifically, for IM > 0, the model always 

correctly judged the target to be in its normal orientation and for IM < 0, it never judged 

the target to be in its normal orientation. The three misses in the large diamond distractor 

simulation happened when IM = 0. In such trials, the model randomly responded either 

‘normal’ or ‘rotated’. Evidently, it ‘guessed’ incorrectly in each of these three trials. 

For human subjects, equation (4) takes the form: 

IH = I* + ∈O + ∈I                        (6) 

where IH = ‘detected’ difference of support ratios by the human observer, ∈O ~ N(0,σ2
O), 

and ∈I ~ N(0,σ2
I). ∈O represents human error in using orientation as a classification 

feature. ∈I represents error produced by noise in the perceptual representation of intrinsic 

contour. It seems reasonable to assume σ2
O = 0 because it is known that human subjects 

are able to discriminate between lines whose orientations differ by less than a degree 

[Regan and Beverley 1985]; here, there is a 45o orientation difference between the 

contours to be discriminated (i.e., between the intrinsic and extrinsic contours). So, (6) 

becomes: 

IH = I* + ∈I  .                      (7) 

From (5) and (7), we obtain: 

IH = IM + ∈I                                   (7a) 

Assume that the human observer uses a decision rule analogous to (3): 

            IH < 0:  respond "rotated", 

r =       IH > 0:  respond "normal", 

           IH = 0:  respond "normal" with p = 0.5.                                            (8) 

Using this rule leads to a psychometric function that is a sigmoid curve, rather than a step 

function as implied by (3). The logic for this claim is as follows. In (7), for a given I*, IH 



 23 

is a random variable due to the error term ∈I, as defined in (6). The density function for 

IH is therefore: 
2
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The probability of a human responding that the target is in its “normal” orientation can 

be written as: 

pH(“normal”) = p(IH > 0) = 
0

+∞

∫ f(IH)dIH                                (10) 

Note from (5) that IM can be substituted for I* in (9). Therefore, when pH(“normal”) is 

plotted against IM,  a sigmoid curve is expected. Specifically, this curve is a cumulative 

normal distribution with zero mean and variance σI
2. These psychometric functions can 

be determined because the model’s computation of IM and the subjects’ responses 

pH(“normal”) were obtained from the same stimuli. 

Figure 9 shows the psychometric functions for each subject. (a)-(b) show the 

functions in the small and large diamond distractor conditions for ZP. (c)-(d) show the 

functions in the small and large diamond distractor conditions for MS. In each graph, the 

solid curve is the curve fitted to the data points by using Probit Analysis [Finney 1971]. 

The goodness of fit was evaluated using a χ2 test. Large values of χ2 indicate poor fit 

which might be caused by either using the wrong approximating function (here, Gaussian 

is assumed) or by not including factors in the model that have a substantial effect on the 

subject’s performance. Here only one such factor is included, namely IM. If on the other 

hand, the χ2 is not very large, we are justified in claiming that IM is the only factor 

(except for random Gaussian noise) which accounts for human performance in the 

orientation experiment. This was the case for each curve for each subject. Table 2 shows 

the Pearson χ2, its p-value, the (µ
∧

, σ
∧

) parameter estimates, and their standard errors. 

Note that the estimated mean of the psychometric function was close to zero in all 

conditions (as compared to se). This indicates that the subjects did not have appreciable 

response bias towards either a "normal" or "rotated" response. 
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Table 2: Curve fitting and goodness of curve fit  

______________________________________________________________________ 

Distractor  Type/ 

Subject    µ    se         σ   se        χ2       df     p 

______________________________________________________________________ 

Small Diamonds 

ZP  .008 .008  .116 .009    10.779       6 .096 

MS  .005 .006  .070 .005      6.034       6 .419 

Large Diamonds 

ZP  .024 .009  .149 .015      1.565       7 .980 

MS  -.000 .005  .062 .004      9.802       7 .200 

Small and Large Combined 

ZP  .014 .006  .130 .008      9.117       7 .244 

MS  .002 .004  .066 .003    11.282       7 .127 
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Figure 9.  Psychometric functions for contour orientation conditions.  (a) Small diamond distractor condition for 

subject ZP.  (b) Large diamond distractor condition for subject ZP.  (c) Small diamond distractor condition for 

subject MS.  (d) Large diamond distractor condition for subject MS. 

The two experimental conditions – small and large diamond distractors – produced 

similar psychometric functions. This was expected because the values of IM computed by 

the model were very similar in the two conditions. In other words, these two conditions 

were of equal difficulty for the model. If the model is psychologically plausible, these 

two conditions should also be of equal difficulty for the subjects, and in fact they were 

(see Figure 5). Therefore, we estimated the psychometric function from both conditions 

taken together, to obtain a more reliable estimate of the variance, sI
2, of the function. 

The next question is whether this model would generalize to other types of stimuli, 

where the property for separating intrinsic from extrinsic contours is not contour 

orientation. In fact, one might argue that the simulations presented so far have not 

provided a strong test of the model simply because the separation of intrinsic from 

extrinsic contours was quite easy and the detected support ratio IM was usually identical 

to the actual support ratio I*. In other words, is the actual support ratio, as represented by 

I*, the whole story? 

The results of Experiment 2 indicate otherwise (see Figure 6). Recall that in this 

experiment, the length of the contour was the property to be used in classification of 
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Table 3: Actual support ratio (I*) is approximately constant when Total Distractor Area (TDA) is constant.  

Results for square distractors.  

______________________________________________________________________ 

Condition                         average I*       se 

______________________________________________________________________ 

small TDA 

   small squares    .1176    .0149 

   medium squares   .1228    .0145 

   large squares    .1196    .0170 

______________________________________________________________________ 

medium TDA 

   small squares    .1020    .0122 

   medium squares   .1072    .0099 

   large squares    .1024    .0132 

______________________________________________________________________ 

large TDA 

   small squares    .0876    .0106 

   medium squares   .0940    .0105 

   large squares    .0886    .0113 

---------------------------------------------------------------------------------------------------------- 

intrinsic vs. extrinsic contours. In this experiment, as distractor size increased 

performance of subjects in the identification task decreased (by contrast, this was not so 

for diamond distractors). This was true even though total distractor area (TDA) was held 

constant across distractor size conditions. Since TDA determines the actual support ratio 

I*, actual support ratio was also held constant across distractor size conditions. Table 3 

illustrates this. It follows that the systematic effect of distractor size found in Experiment 

2 cannot be accounted for by the actual support ratio I*. The question now is whether the 

support ratio IM, as detected by our model, can account for these psychophysical results. 

To answer this question we performed a simulation experiment in which the model was 
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applied to the stimuli that were used in Experiment 2. Next, we derive a prediction for the 

parameters of the psychometric function in the case of stimuli from Experiment 2. 

 

4.2 Contour Length 

For the size simulations, the appropriate model (analogous to (4)) is: 

IM = I* + ∈S(M) + ∈I(M)  ,                           (11) 

where IM, I*, and ∈I(M) are as before, ∈S(M) ~ N(0,σ2
S(M)). ∈S(M) represents model error in 

using contour length as a classification property. From casual inspection of images such 

as Figure 4(a)-(b), it is expected that σ2
S(M) > 0. As with the orientation simulations, σ2

I(M) 

= 0. Thus (11) becomes: 

IM = I* + ∈S(M)                       (12) 

and 

IM ≠ I*  .                                    (13) 

For human subjects, the relation analogous to (11) takes the form: 

IH = I* + ∈S + ∈I ,                                  (14) 

where IH, I*, and ∈I are as before, ∈S ~ N(0,σ2
S). ∈S  represents the error produced by the 

human visual system in using contour length as a classification property. From (12) and 

(14), we obtain: 

IH = IM + (∈S − ∈S(M)) + ∈I .                                 (15) 

If the model classifies contours exactly the same way as the human visual system does (in 

each and every trial), then:  

∈S = ∈S(M) .                                   (16) 

From (15) and (16) we obtain: 

IH = IM + ∈I .                                   (17) 

Note that this equation is identical to equation (7a) for orientation. Therefore, if we plot 

the proportion pH(“normal”) of the human observer against IM, we should obtain one 

psychometric function defined by equation (10) for all 9 conditions in the contour length 

experiment. Recall that the psychometric function in equation (10) was estimated from 

the results of an experiment where a different property, namely contour orientation, was 

used for contour classification. Experiment 2, the contour length experiment, involved a 

total of 9 conditions: there were three levels of the distractor size (discussed above) and 

three levels  of the total distractor area. If the pyramid model were psychologically 

plausible, it would be able to account for psychophysical results from all 9 different 

experimental conditions in the contour length experiment (Exp. 2) using no free 
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parameters (the variance sI
2 was estimated from the orientation data). If, however, the 

model were inadequate, there would be no reason to expect that the psychometric 

function defined in equation (10) would provide a good fit to all nine conditions of 

Experiment 2. 

Subject MS repeated the nine conditions of Experiment 2, using the same sets of 

stimuli that were used by subject ZP in that experiment. Thus, the same nine sets of 

stimuli were used for each subject and the model to facilitate direct comparison between 

the model and each subject. The results of MS from the repetition of Experiment 2 were 

very similar to his original results from Experiment 2. 

Simulations were carried out in the same manner as for contour orientation. Here, two 

simulations (one producing IM, the other producing I*) were performed for each of the 

nine experimental conditions. The first simulation produced classification of intrinsic and 

extrinsic contours based on root detection. In the second simulation, no classification of 

intrinsic vs. extrinsic contours was performed – all image contours were passed directly 

to the template matching module. Thus, the first simulation for a given condition 

produced detected support ratio (in the form of IM), while the second simulation produced 

actual support ratio (in the form of I*). While the first set of simulations facilitated 

testing the model proposed here, the second set of simulations permitted testing the 

predictive power of actual support ratio [Shipley and Kellman 1992]. The contour 

orientation simulations did not allow an independent test of IM and I* because the 

populations of intrinsic and extrinsic contours were so clearly separable that IM = I* 

(detected support ratio was equal to actual support ratio). 

We fitted one psychometric function to the results pooled from all 9 conditions of 

Experiment 2 for both IM and I*. Figure 10 depicts the relationship among estimated σ’s 

for these psychometric functions as well as for that of the combined orientation 

conditions. It is clear that for both subjects, there is not a significant difference between 

the σ’s for the contour orientation psychometric function and the contour length 

psychometric function for the IM case. The σ for the contour length psychometric 

function for I* is, however, significantly different (by a factor of 2) from the other two 

σ’s. The fact that there is no significant difference between the σ for contour orientation 

and contour length in the case of IM suggests that the curve estimated from contour 

orientation data can account for the psychophysical results from each of the nine 

individual conditions in the contour length experiment (Exp. 2). This conjecture will be 

evaluated by analyzing the slopes of the psychometric functions. 
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Figure 10.  Comparison of σ's for contour orientation (diamond distractors), contour length (square distractors – 

IM simulations), contour length (square distractors – I* simulations). 

We fitted psychometric functions to the individual 9 conditions of Experiment 2. The 

estimated s’s are shown in Figure 11. Each graph in this figure shows estimated σ for the 

curve fitted to the combined diamond distractor conditions (solid horizontal line), the 

estimated σ for the curve fitted to the combined square distractor conditions (dashed 

horizontal line), and the estimated σ for the curves individually fitted for each of the nine 

square distractor conditions (nine data points). There is one graph each for IM and for I* 

for each subject. The σ for combined length (square distractor) conditions and σ for 

combined orientation (diamond distractor) conditions are very similar in the case of IM. 

However, this is not true in the case of I*: the solid and dashed lines for each subject are 

spaced farther apart. This result was already shown in Figure 10. The new aspect is the 

set of σ’s from the individual conditions. The data points representing the σ’s fall closer 

to both lines in the case of IM. This fact illustrates that the psychometric function 

estimated in the orientation experiment can indeed account well for the results from the 

individual conditions in the length experiment when IM (but not I*) is used as the 

independent variable. Note that the data points in the case of I* are not scattered 

randomly. Instead, they show a systematic pattern. The nine conditions represent three 

triplets. Each triplet represents a specific total distractor area: triplets {1,2,3}, {4,5,6}, 

and {7,8,9} represent small, medium, and large total distractor area, respectively. The σ’s 

for I* across the triplets of conditions are similar. This means that I* can account for 

differences in performance across different TDAs. This is not surprising because I* is in 

fact closely related to TDA (as shown in Table 3). But σ’s for I* within triplets are not 
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similar. Instead, the σ’s are positively correlated with the distractor size: with the 

exception of the last triplet of points for subject ZP (i.e., the data points for conditions 

7,8,9), each triplet of points is monotonically increasing with condition. This systematic 

change of σ across experimental conditions represents differences in difficulty across the 

conditions that are not accounted for by the psychometric function estimated in the 

orientation experiment. In other words, if this function were substituted for the set of nine 

individually fitted curves for I*, information pertaining to this systematic relationship 

would be lost. 

     

         
Figure 11.  Comparison of ‘overall’ contour orientation and contour length σ's to the ‘individual’ σ's from each 

contour length condition. 

Figure 12(a) shows the IM histograms for each of the nine individual conditions. The 

top row represents small TDA, the middle row represents medium TDA, and the bottom 

row represents large TDA. Figure 12(b) shows the corresponding I* histograms for the 

nine conditions. Note that all I* histograms for a level of TDA are similar to one another. 

The IM histograms, on the other hand, do vary substantially across condit ions for a given 

level of TDA. The conditions that were easy for subjects led to many large absolute 

values of IM. Those that were difficult for subjects led to many small absolute values of 

IM. This observation led to the following analysis. 
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(a)                     IM                                                      IM                                                       IM 

             

               

           
(b)                    I*                                                      I*                                                        I*   

Figure 12.  (a) Frequency histograms for IM simulations.  (b) Frequency histograms for I* simulations. Total 

distractor area (TDA) increases going from top to bottom rows.  Distractor size increases going from left to 

right columns.  



 32 

According to model predictions, one psychometric function (equation 10) can account 

for all nine conditions. The differences in the difficulty would be entirely attributable to 

the absolute magnitude of IM as detected by the model (see histograms). If that is the 

case, then the proportion correct for each of the nine sessions can be predicted from the 

histograms of IM and the noise inherent in the perceptual representation of intrinsic 

contour as estimated by sI. This prediction is made as follows. From the ‘overall’ fitted 

curve P(IM), the proportion of correct responses, p, for any value of IM can be determined 

by taking p = P(IM) when IM > 0, and p = 1 - P(IM) when IM < 0. Assume a vector of such 

proportions, p. Next, assume a vector of ni , where i = experimental condition 1,…,9 and 

where each element of ni is the number of trials falling in a particular interval of IM (see 

histograms). Then, the overall predicted proportion correct for a given experimental 

condition i is given by: 

pi
)   =  (p · ni) / (ni · 1)  ,  i = 1, …, 9              (18) 

where 1 is a column vector whose elements are all ones. If the model is psychologically 

plausible, then pi
)  computed from (18) should be equal to the proportion correct from the 

corresponding condition i in the psychophysical experiment. So, if estimated proportion 

correct pi
)  is plotted against actual proportion correct from the experiment, the data points 

should be on a diagonal. If, however, the model has no relationship to perceptual 

mechanisms, then the data points should fall on a horizontal line. 

Formula (18) was applied to both the IM and I* cases, and the results are shown in 

Figure 13. The solid line is the diagonal (slope of +1). The o's represent the data points 

which correspond to predicted proportion correct based on histograms of IM for each of 

the nine conditions for the subject. The x’s are the data points corresponding to the 

predicted proportion correct where the prediction was based on the histograms of I*. A 

regression line was fitted to the points produced by IM and to those produced by I*. As 

Figure 13 shows, the slope of the regression line fitted for the I* predictions is not much 

different from horizontal. A statistical analysis confirmed that the slope for the I* line 

was not significantly different than zero for either subject (ZP: slope = .072, se = .073;  

MS: slope = .115, se = .142). This means that I* has no predictive value across the 

experimental conditions used in this experiment. On the other hand, the slope of the 

regression line fitted for the IM predictions is not close to zero. In fact, this slope is much 

greater than zero for both subjects. For subject MS, this slope was close to one (slope = 

1.226, se = .176). For subject ZP, the slope for the IM line was not close to 1 (slope = 

.653, se = .084). However, from looking at this graph, it is clear that for the more difficult 
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experimental conditions, there was a floor effect in the case of ZP (performance close to 

chance), which would likely have affected the slope of the resulting fitted regression line. 

To test this, the two data points corresponding to the two conditions where ZP had 

proportion correct less than .6 in the psychophysical experiment were removed and the 

regression was performed again. The slope increased to .785 (se = .072), suggesting that 

the slope of the relation between observed p and predicted p may indeed be one for both 

subjects. These results clearly show that the model that produces IM is a much better 

model of human performance than the one which produces I*. The fact that the 

regression line for IM for each subject is shifted down relative to the diagonal indicates 

that there is yet some other factor besides detected support ratio. This issue will be 

revisited in the General Discussion section. From this graph, however, it is clear that 

detected support ratio is a more important factor than actual support ratio. 

 
        (a)        (b) 

Figure 13.  Predictions by IM and I* of performance in Experiment 2.  (a) Predictions for subject ZP.  (b) 

Predict ions for subject MS. 

To summarize, the simulation results presented above show that our model of the 

perception of partially visible figures is psychologically plausible. Using root detection-

based classification (IM simulations), it provided a good account of the psychophysical 

results. The relationship between model and human results was much stronger than when 

classification was not used (I* simulations). This implies that detected support ratio is a 

more important factor than actual support ratio [Shipley and Kellman 1992] in the 

perception of partially visible figures. We would like to emphasize the fact that the root 

detection-based classification, which is a critical element in our model, involves global 

processing of the image. Only after the entire image has been analyzed does the model 

obtain a cutoff value for a given contour property that can then be used to reliably 

classify those image contours belonging to the figure. A purely local based analysis is 

unlikely to produce the required classification. The strong account of the psychophysical 
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data provided by this model suggests that humans also use this kind of global processing 

in classifying contours. This conclusion is consistent with the Gestalt idea that something 

about the whole may guide how the parts are grouped into that whole [Wertheimer 

1923/1958; Koffka 1935]. 

 

5. GENERAL DISCUSSION 

Figure-ground segregation for complex images where the figure is only partially visible 

seems to require that image contours first be classified as either belonging or not to the 

figure. Nakayama et al. [1989] proposed this already in the context of partially occluded 

figures. However, unlike their theory, we propose that depth cues are not necessary to 

facilitate such classification. Rather, any property of contours can potentially be used to 

classify the contours in an image as either belonging or not to a partially visible figure. 

The psychophysical results presented here show that relative contour orientation (Exp. 

1), relative contour curvature (Exp. 1), and relative contour length (Exps. 1-2) are other 

contour properties, in addition to depth, that may be used in the classification of image 

contours. Further, our psychophysical results, especially those of the contour length 

(square distractor) conditions, suggest that a human observer globally processes an image 

(or a large part of it) to find the intrinsic contours. A new model that incorporates these 

principles was formulated. In particular, this new model is efficient in globally processing 

an image, because a ‘receptive field’ in a given layer of the model may process its 

distinct portion of the image in parallel with all other receptive fields at that layer. 

Computer simulations using this new model accounted well for the results of several 

psychophysical experimental conditions presented here. Using just one free parameter, 

the new model accounted for the results across 11 experimental conditions. 

One potential objection to this proposed theory is that perhaps classification of image 

contours per se is  unnecessary. That is, perhaps the visual system can group just the 

contours that belong to the partially visible figure without relying on an explicit prior 

classification stage. The contour length simulations of Experiment 2 provide strong 

evidence against this argument, however. Two sets of simulations of Experiment 2 were 

performed – the IM simulations, which used the exponential pyramid model to perform 

the intrinsic/extrinsic classification, and the I* simulations, where image contours were 

passed, unclassified, directly to the template matching module. As shown, the IM 

simulations provided the superior account of the human psychophysical results of 

Experiment 2. These simulations also showed that support ratio, as formulated by Shipley 
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and Kellman [1992], does not provide a complete explanation for the perception of 

partially visible figures. Detected support ratio, as defined in this paper, provides a more 

complete explanation. 

While the contour length IM simulations provided a much better account than the I* 

simulations of the results of Experiment 2, consider again Figure 13. Note for each 

subject that the fitted IM ‘prediction’ line is shifted down from the diagonal (that 

represents human performance). This suggests the presence of a secondary factor. This 

secondary factor could be related to some role of region information in the perception of 

partially visible figures. Indeed, it has recently been shown that region or surface 

information can play a role in this task [Scheessele and Perez 2003;  Yin, Kellman, and 

Shipley 1997;  Tse and Albert 1998;  Grossberg 1997]. 

 

FOOTNOTES 
1  The retinal image also provides region information, which arises from figure 

(object) surfaces and from the background in the visual scene. Here, we focus only on the 

contribution of contour information to figure-ground segregation. Additionally, non-

retinal sources of information, such as memory, are not considered here (but see Peterson 

[1999]; Palmer and Rock [1994a], [1994b]; Vecera and O’Reilly [2000]). 
2  The use of a bottom up stage to compute the statistics of an image and a top down 

stage for segmentation resembles Bouman and Liu’s [1991] algorithm. 
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