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In aretina image, contours belonging to a figure of interest may be intermixed with other contours (caused by
occlusion, camouflage, low contrast, etc.), making difficult the identification of figure contours and thus the
figure itself. In psychophysical experiments, we found that identification of a figure is facilitated by:

differences in relative contour orientation, relative contour curvature, and relative contour length between
contours that belong to the figure and those that do not. In short, a differenceinany contour property seamsto
facilitate correct identification of afigure. A computational model, based on the exponential pyramid

architecture, was constructed and model simulations of several conditions from the psychophysical experiments
were performed. A critical aspect of the model isthat it performs contour classification by using statistics
computed from the entire image. Model simulations accounted well for the results of 11 experimental

conditions, using just one free parameter. These results suggest that the human observer uses globa featuresto
make local contour classification decisions in the image and that the exponential pyramid architecture can
adequately model perceptual mechanisms involved in figure-ground segregation.
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1. INTRODUCTION

Figure-ground segregation refers to the ability of the human visual system to: (a) group
one or more regions in the retinal image that potentially correspond to an object and (b)
separate this grouping from other regions which compose the background or which form
other objects. (A closely related problem in computer vision is image segmentation,
where the goal is to partition a digital image into regions that may correspond to
recognizable objects.) From the demonstration of Rubin [1915/1958] to the present,

understanding how figure-ground segregation works has been one of the fundamental
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chalenges of perceptual psychology. The human visual system is quite effective at
performing figure-ground segregation. This is certainly true when the visual scene
contains just a single object in front of a homogeneous background, but it is aso true for
more complex images. Consider Figure 1 — it is not difficult to perceive the figure (a car)
although it is partially occluded by a fence (as is a second piece of machinery) and
although the background is composed of varying textures corresponding to pavement,
grass, trees, bushes, and part of a building. Figure 2 may be more challenging, yet it is
possible to perceive the figure (a Dalmatian), even though the region corresponding to the

Dalmatian and the region corresponding to the background are both composed of black

and white patches.

Figure 1. Fence partially occludes car in visual scene. Figure 2. A Dalmatian. Image by R.C. James.

Early attempts [Rubin 1915/1958; Koffka 1935] to explain figure-ground segregation
were largely descriptive; unfortunately there has been little progress since then towards
an explanation [Palmer 1999]. Nevertheless, a typical presumption has been that the
Gestalt ‘laws of perceptua organization’ [Wertheimer 1923/1958] play a role in figure-
ground segregation. The Gestalt ‘laws demonstrate conditions under which distinct
elements in a retinal image may be grouped together to form larger structures (e.g.,
perhaps even a figure of interest). Contours represent one possible type of ‘element’ in a
retinal image'. Contours in a retinal image arise from figure boundaries in the visual
scene (but may also be due to shadows, background textural elements, etc.).
Understanding how pieces of image contour ‘ go together’ to form larger contours is thus
likely beneficial to understanding how afigure in the retinal image may be perceived.

There are a number of Gestalt laws of perceptual organization — several will now be
described. The law of proximity states that, other things equal, elements near to one
another in an image have a greater tendency to be grouped together than if they were
farther apart. The law of similarity states that similar elements tend to be grouped
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together. The law of good continuation states that contour groupings where resulting
curves are smooth are preferred over those where resulting curves abruptly change
direction. The law of closure refers to the tendency to perceive an image region enclosed
by a contour as a figure, separate and somehow different from the surrounding
background, even though the regions inside and outside of the contour may be of the
same substance. This can occur even though the contour may be somewhat fragmented
[Koffka 1935]. While origina formulation of the Gestalt laws largely relied on
demonstrations [Wertheimer 1923/1958; Koffka 1935], recent work has aimed at
providing more rigorous quantitative explanations of these principles with regards to
contour grouping (with respect to closure, see Elder and Zucker [1994]; with respect to
good continuation, see Pizlo, Salach-Golyska, and Rosenfeld [1997]; Feldman [2001];
Geider, Perry, Super, and Gallogly [2001]; Elder and Goldberg [2002]; with respect to
similarity and proximity, see Elder and Goldberg [2002]). However, this recent work has
tended to focus on how local pieces of contour are grouped into larger pieces of contour.
With complex images, figure-ground segregation may require more than just local
grouping of pieces of contour. It may also require that all visible contours of afigure be
classified from those that do not belong to the figure (e.g., those belonging to the ground
or to other figures). Such a requirement may entail global processing. Indeed, the
enigmatic Gestalt idea that something about a whole guides how the parts are grouped
into that whole [Wertheimer 1923/1958; K offka 1935] anticipates this.

The task of classifying contoursthat belong to afigure from those that do not may be
especially challenging when occlusion is present. Consider Figure 1 again. Notice that the
fence not only interrupts the contours of the car, but it also introduces contours in the
image where parts of the car would otherwise appear were it not for the fence. The task of
classifying contours that belong to a figure may also be more difficult when the figure
appears to be fragmented or degraded, but with no (obvious) occlusion present. One
example is camouflage, where the camouflage agent may break up the natural contours of
a figure, while simultaneously adding new contours within the boundaries of the figure.
Another example is low contrast between parts of a figure and the background. For
instance, when the background is dark and parts of a figure are covered by shadows,
those parts may appear to blend in with the background, resulting in omission from the
image of sections of figure contour and introduction of spurious new contours that

correspond to shadow boundaries.



The occlusion literature, in particular, has long recognized the challenge posed by
image contours that do not belong to a figure of interest — specifically image contours
introduced by an occluder [Nakayama, Shimojo, and Silverman 1989; Kellman and
Shipley 1991; Brown and Koch 1993; Grossberg 1994]. For example, a crucid
component of the theory of Nakayama et al. [1989] is that the contours “intrinsic” to an
occluded figure must be discriminated from those “extrinsic” to it (i.e., those belonging to
the occluder). Once the image contours intrinsic to the figure are classified as such, they
can be further subjected to grouping before being ultimately submitted to a recognition
process. Their theory claimed that this classification of image contours into intrinsic
(belonging to figure) versus extrinsic (belonging to occluder) is performed on the basis of
relative depth of the two types of contours in the visual scene. To illustrate, assume an
observer is viewing the scene depicted by Figure 1. The retinal image produced would
contain contours of the occluding fence that intersect with contours of the occluded car.
They point out that in nature an occluder is always closer to the observer than the figure
which it occludes. They argue that such depth information is available early in vision and
that it is used by the human visual system to classify the contours of the occluded figure
apart from those of the occluder. (In cases where the ‘visual scene’ is simply a picture,
they conjecture that T-junctions provide the depth information.) While it seems plausible
with respect to occlusion, this theory (and other contour-based theories of the perception
of partialy occluded figures) cannot account for perception of degraded or fragmented
figures (see Figure 2 for an example). In such cases, there is typically no depth
information with which to classify contours as belonging or not to the figure. Yet, it is
often possible to perceive such partially visible figures. Perhaps then there are other
contour properties, in addition to depth, that enable the human visual system to classify
image contours as belonging or not to afigure.

Contour classification is just one task that may be required for perception of partially
visible figures. Another is contour interpolation. Observe that when afigure is partially
visible, portions of its bounding contour are typically missing and therefore must be
interpolated. Shipley and Kellman [1992] proposed that he perceptual strength of
interpolation is a function of the ‘support ratio’ of the resulting contour. Support ratio is
defined as the total length of physically present pieces of a contour divided by total
length of the physically present and interpolated pieces of a contour. This idea resonates
with common sense and indeed support ratio is commonly accepted (but see Singh,

Hoffman, and Albert [1999], for an alternative view). However, their experiments used
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square figures, where each side of a square had an identical gap in its contour [Shipley
and Kellman 1992]. Does support ratio account for perceptual strength of a figure when
thefigureisless simple and the pattern of its contour fragmentation is random?

In this paper, we first report new psychophysical results which demonstrate that the
human visual system can classify contours as belonging or not to a figure on the basis of
contour properties other than depth (e.g., orientation, curvature, length). We then describe
a new computational model which partitions a set of image contours into those which
belong to atarget figure and those which do not on the basis of a given contour property.
This model is based on the exponential pyramid architecture from the computer vision
literature. A pyramid facilitates both fine-to-coarse and coarseto-fine processing of an
image [Jolion and Rosenfeld 1994]. Our proposed model exploits both properties: it uses
fine-to-coarse (bottom up) processing to efficiently compute image-wide statistics on
various properties of image contours. It then uses coarse-to-fine (top down) processing to
classify local image contours on the basis of global information derived from these
statistics. Figure-ground segregation for complex images (where the figure is partialy
occluded or otherwise appears degraded) seems to require use of global image
information, yet efficient psychologically plausible methods for extracting such
information have not been demonstrated previously. The important aspect of the
proposed model is that it shows how global image information can be efficiently
determined and used to make local processing decisions. Finally, we report the results of
model simulations of psychophysical experiments. These simulations provided a test of
the psychological plausibility of our new model. Additionally, these simulations allowed

evaluation of the role of support ratio in figure-ground segregation.

2. PSYCHOPHYSICS

In order to test whether the ‘intrinsic’ contours of a figure must be classified separately
from contours *extrinsic’ to the figure and whether such classification can be performed
with contour properties other than relative depth, we used stimuli such as the one shown
in Figure 4(a), where not all fragments of a particular color (here black) belong to the
target figure. (Figure 4(a) is a sample image from one of our experimental conditions.)
The target figure in this particular stimulus is an upside-down, asymmetric ‘U’,
positioned slightly left of center. The stimulus contains a number of white and black
distractors. When a white distractor overlaps the black target figure, it ‘erases’ part of the

target figure. When a black distractor overlaps the black target figure, it distorts the shape
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of the figure somewhat. Note that by using white and black distractors, we mnimized
(although did not eliminate) the role of region information: a white point in the image
could be either in the interior or exterior of the figure. Similarly, a black point could be
either in the interior or exterior of the figure. Minimizing the ole of region information

may help inisolating the specific role (if any) of contour information.

2.1 Experiment 1: Effects of Contour Orientation and Curvature

If classification of intrinsic vs. extrinsic contours and subsequent removal of extrinsic
contours is critical for perception of partialy visible figures to occur, then any cue which
distinguishes between these two types of contours should lead to such perception. From
the “pop out” phenomenon described by Treisman [1986], we know that a straight
oblique contour would pop out from a field of straight horizontal and vertical contours.
Similarly, a curved contour would pop out from a field of straight horizontal and vertical
contours. Thus if a target has straight horizontal and vertical contours, while distractors
have either straight oblique or curved contours, then the target figure should be readily
perceived.

2.1.1 Method.

Subjects. Three subjects (GW, ZP, MS), including both authors, participated. GW
was naive with regards to the hypothesis being tested. All subjects had practice in the task
prior to the experiment such that their performance in the task was asymptotic prior to the
start of the experiment. Subjects ZP and MS were myopes and used their corrective
lenses. ZP and M'S were experienced as subjects in psychophysical experiments. Viewing
was monocular from a distance of 82 cm. A chin-forehead rest supported a subject’s
head.

Stimuli. Each stimulus contained one of the five black figures shown in Figure 3
against a white background, with distractors randomly added over the entire image. Each
of the figures in Figure 3 consisted of four 200x100 pixel rectangles. Two types of
distractor were used — white and black. For each stimulus image, there were always an
equal number of white and black distractors, and they were always the same size. This
experiment consisted of six conditions characterized by distractor size (small, large) and
distractor shape (diamond, circle, square). Thus, the only thing that varied between the
six experimental onditions was the nature of the distractors. The total distractor area
(TDA) was held constant across the six conditions. The TDA for both white and black

distractors in each condition was approximately 540,000 pixels (the actual area occupied
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by distractors in a stimulus image could be less, due to distractors that overlap one
another, for example). Stimuli were presented on a computer monitor, with 1280x1024

resolution (39.1 cm. x 29.5 cm.). A sample stimulus from each of the six conditions is
shown in Figure 4.

11hl'u|_|d.

Figure 3. Target figures used in experiments (‘normal’ orientation).
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Figure 4. Sample stimuli from six experimental conditions of Experiment 1.

Procedure. The order of the six conditions was random and different for each subject.
In the two square distractor conditions, the distractor contours did not differ in either
orientation or curvature from the contours of the target figure. In the two diamond
distractor conditions, distractor contours differed in orientation from the contours of the
target figure, while in the two circle distractor conditions, distractor contours differed in
curvature from the contours of the target figure.

Each experimental condition consisted of 500 experimental trials, which were
preceded by 50 practice trials (subjects had the option to repeat the practice set as many

times as they wished and they were informed of their performance after each such set).
An identification task was used.



Each trial began with a fixation cross at the center of the screen. When the subject
pressed the mouse button, a stimulus was presented for 100 msec. A stimulus contained
one of the five figures shown in Figure 3 or its 180°-rotated (upside down) version. A
figure was presented amid white and black distractors, as described above. Half of the
trials contained a figure in its normal orientation and the other half in the rotated
orientation. Because location of the target figure in a stimulus varied randomly across
trials, as did placement of the white and black distractors, the stimulus in each trial was
unique. After the stimulus disappeared, the subject was shown images of the normal and
the 180°-rotated versions of the figure (without distractors) and was asked to identify
which one had been presented in the stimulus. Subjects were given feedback at the end
of each trial asto whether the normal or rotated version of the figure had been presented.
When a ‘Next Trial’ button was clicked, the fixation cross reappeared, signaling the start
of the next trial. Average proportion correct was used as the performance measure.

2.1.2 Results and Discussion. The results are shown in Figure 5. Performance is
clearly better when either diamond or circle distractors are used than when square
distractors are used. An interesting result is that while performance drops off with
increasing distractor size in the case of square distractors, this decrease in performanceis
not as large (if present at all) when either diamond or circle distractors are used. This
suggests that large distractors per se do not remove more informative parts of the figure
than small ones.

The superior performance in the case of circle or diamond distractors supports the
hypothesis that separation of extrinsic from intrinsic contours is critical for perception of
partially visible figures, since the distractors were designed to lead to easy classification
of the two types of contours. These results also show that depth cues are not required to

classify those contoursthat areintrinsic to the figure from those that are extrinsic.

2.2 Experiment 2: Effect of Contour Length

In Experiment 1, subjects performed much better when diamond or circle, rather than
square, distractors were used. Yet in the case of sgquare distractors, subject performance
was still quite good, as long as the square distractors were small. Perhaps the human
visual system can distinguish the contours that belong to a figure from those that do not
based on contour Iength. Indeed, in the small square distractor condition, there was a
large difference in length of the contours of a distractor vs. those of atarget figure, while

in the large square distractor condition this difference was smaller. Under this hypothesis,
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Figure 5. Results of Experiment 1. The roles of contour orientation and curvature.
performance in the square distractor conditions should be worse (and it was) than in the
diamond or circle distractor conditions because relative contour length would be a less
reliable cue than either relative contour orientation or relative contour curvature for
classifying contours as intrinsic or extrinsic to the partially visible target figure. To
understand why, recall that distractors are randomly placed on a stimulus image. Evenin
the case of small square distractors (with short contours), several white distractors could
overlap the black target figure in such a way as to leave short pieces of contour of the
figure. This would make classification between intrinsic and extrinsic contours on the
basis of relative contour length somewhat more difficult than such classification on the
basis of relative contour orientation or relative contour curvature.

2.2.1 Method.

Subjects. Three subjects participated (SG, ZP, MS), including the authors. SG was
naive with regards to the hypothesis being tested. All subjects had practice in the task
prior to the experiment such that their performance in the task was asymptotic prior to the
start of the experiment. All subjects were myopes and used their corrective lenses.
Viewing was monocular from a distance of 82 cm. A chin-forehead rest supported a

subject’ s head.



Stimuli.  Stimuli were like those used in Experiment 1, with the exception that all
conditions in Experiment 2 used $imuli with square distractors. The primary factor
manipulated in Experiment 2 was distractor size (i.e., extrinsic contour length). Three
sizes of distractor were used: 40 x 40 pixels, 63 x 63 pixels, and 100 x 100 pixels. The
values 40, 63, and 100 represented a linear increase of the size ratio (i.e, 63/40 @
100/63). Total area used by distractors (TDA) was another factor manipulated in the
experiment. Obviously, the greater the total area of the distractors used, the worse the
performance should be in a figure-ground segregation task. The same TDA was used for
both white and black distractors in a given stimulus image (as in Experiment 1). Three
total distractor areas (TDAS) were used: 480,000, 540,000, and 600,000 pixels. These two
experimental factors, distractor size and total distractor area, were orthogonal. For each
total distractor area, there were three separate experimental conditions, one for each
distractor size. For example, for a given total distractor area, there was a session with a
large number of small distractors, a session with an intermediate number of intermediate-
sized distractors, and a session with asmall number of large distractors.

Procedure. There were 9 experimental conditions representing all combinations of
the 3 total distractor areas and 3 distractor sizes. The order of conditions was random and
different for different subjects. In al other aspects, this experiment was identical to
Experiment 1.

2.2.2 Results. The results are shown in Figure 6. The abscissa represents size of the
distractor, the ordinate represents average proportion correct. Individual curves represent
different total distractor areas. The result of primary interest is represented by the
downward slope of the curves: as distractor size increases, average proportion correct
decreases. Since each curve represents constant total distractor area (many small
distractors vs. fewer large distractors), the downward slope of the curves cannot be
attributed to the "amount’ of the figure occluded. Instead, it may represent the effect of
the relative scale (length) of intrinsic vs. extrinsic contours. The effect of the total
distractor area itself is represented by the difference in heights among the curves —
average proportion correct decreases with increasing total distractor area.

A 3factor ANOVA with total distractor area, distractor size, and target figure as
factors corroborates these observations. The ANOVA showed a main effect of total
distractor area, (F[2,4]=64.36, p=.0009) and a main effect of distractor size,
(F[2,4]=92.95, p=.0004). There was dso a main effect of target figure, (F[4,8]=34.51,
p=.0001) and an interaction between total distractor area and target figure (F[8,16]=3.34,
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p=.019). There were no other significant interactions. The target figure effect isrelated to
the fact that all subjects had worse performance on two of the target figures than on the
others, and they all had better performance on one of the target figures than on the others.
These differences across target figures led to large error bars in Figure 6. The total

distractor arealtarget figure interaction may have the following explanation. For the

difficult target figures, performance may have already been poor enough in the case of
the smallest total distractor areathat an increasein thisareadid not cause much more of a
drop in performance. In other words, the difficult target figures showed a'floor' effect.
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Figure 6. Results of Experiment 2. The role of contour length.
2.2.3 Discussion. In Experiment 2, two main effects were found: an effect of total

distractor area and an effect of distractor size. The effect of distractor size (i.e., extrinsic
contour length) is new, but the effect of total distractor areaisnot. Total distractor areais
related to the concept of support ratio [Shipley and Kellman 1992]. Support ratio is the
length of the visible (physically present) portion of a contour divided by total contour
length. It has been shown that as the support ratio of an interpolated contour increases,
perceptual strength of the interpolated contour also increases [Shipley and Kellman
1992]. When a distractor which is of the same color as the background overlaps a contour

of afigure, it erases part of that contour and thus reduces its support ratio. For larger total
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distractor area more contour will be removed. Therefore, support ratio decreases as total
distractor area increases. As shown by the difference in heights of the three curves for
each subject in Figure 6, the support ratio effect reported by Shipley and Kellman [1992]
is confirmed. But the effect of distractor size found in our experiment cannot be
accounted for by a support ratio explanation. Each curve in Figure 6 represents a constant
total distractor area yet reflects decreasing performance with increasing distractor size.
Figure 6 shows that performance can even be better for a lower support ratio, when the
distractor is sufficiently small. As an example, the average proportion correct (for all

subjects) is .79 in the small distractor/large total distractor area condition and .70 in the
large distractor/small total distractor area condition. Therefore, while support ratio

appears to be an important factor in the perception of partially visible figures, it is not the
only factor, nor is it necessarily the nost important one. Here, a more important factor
may have been the distractor size (i.e., length of a distractor’s contours relative to those
of thefigure).

Why should small distractor size lead to more success in solving this figure-ground
segregation task? Before addressing this question, note that when a distractor is of the
same color as the background, whenever it overlaps the boundary of the figure, it erases
some of the intrinsic contour of the figure. On the other hand, whenever it overlaps the
interior region of the figure (here, the black region inside the bounding contour of the
figure), the distractor introduces contour that is extrinsic to the figure. Returning to our
question, look at Figure 4(a). As pointed out above, small distractors are on a different
scale than the larger target figure. Asaresult, straight line segments of extrinsic contours
created by small distractors are short relative to the segments of intrinsic contours of the
target figure. Large distractors, on the other hand (Figure 4(b)), are closer in scale to the
target figure and thus the length of extrinsic contours created by large distractors are
comparable to the length of the intrinsic contour fragments. Now, imagine the
neighborhood of a given point in the image. This neighborhood may have fragment(s) of
the target figure, as well as part or all of one or more distractors. The distractors add
extrinsic contour to this neighborhood while the target figure adds intrinsic contour.
When the extrinsic contours in a local neighborhood of the stimulus image are short
relative to the intrinsic contours (i.e., small distractors are used), this difference in length
of the two types of contours could be used to distinguish extrinsic from intrinsic contours.
When extrinsic contours are longer (i.e., large distractors are used), it may be more

difficult to distinguish extrinsic from intrinsic contours. In any case, relative contour
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length would not be as reliable a property as relative contour orientation or relative
contour curvature, because there would typically be overlap in the population
distributions of intrinsic contour length and extrinsic contour length.

In order to choose a suitable cutoff point that separates the two distributions of
contour lengths, the visual system may need to process the entire image (or a sizable part
of it). This suggests that in using relative contour length to classify contours as intrinsic
or extrinsic to a figure, the human visual system may need to perform global processing
to select the cutoff length. The details of Experiment 2 pose an aternative possibility
though. In the small square distractor conditions, the sides of the square distractors were
40 pixels, while the sides of a target figure (prior to occlusion) were considerably longer
than this. It would have been natural then for subjects to choose a cutoff value of 41
pixels if relative contour length was the property used for contour classification. In each
small square distractor experimental condition, the session was preceded by a number of
practice trials. Thus, subjects “knew” beforehand about the appropriate cutoff to use for
classification purposes in the experimental trials that followed. It is possible, then, that
subjects did not detect a cutoff value in each experimental trial from the visua
information present in the trial, but instead used a pre-determined cutoff value. A control
experiment was performed to test the hypothesis that subjects have the perceptual
capability to determine the cutoff value in a trial from the stimulus image itself and thus
are not required to use memory.

2.2.4 Method.

Subjects. ZP and M S served as subjects in this control experiment.

Stimuli. Small square distractor stimuli and large sgquare distractor stimuli, as before,
were used. Total distractor areawas held constant across distractor size. MS used TDA of
600,000 pixels, and ZP used TDA of 480,000 pixels. These values of TDA were used
because they produced very similar performance in the two subjects in Experiment 2 —
see Figure 6.

Procedure. Each subject ran two sessions apiece. Each session contained 500
experimental trials, preceded by 40 practice trials. Previously, a single session contained
either al small square distractor trials or al large square distractor trials, but not both.
Here, each session contained 250 small distractor trials and 250 large distractor trials.
Individual trials were randomly assigned as either a sirall or large distractor trial. Thus,
in the two sessions combined, each subject was tested in a total of 500 small distractor

trials and 500 large distractor trials. All other details were the same as for the other
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experiments. In these sessions, there was no single cutoff value that could produce
efficient separation of intrinsic from extrinsic contours for both small and large distractor
trials. Therefore, if a subject uses expectation/memory to determine the cutoff value, the
performance in this experiment should be worse as compared to the performance in the
corresponding conditions in Experiment 2 (TDA of 600,000 pixelsin the case of MS and
480,000 pixels in the case of ZP), where small and large distractors were tested in
separate sessions. On the other hand, if the cutoff value is computed from the visual

information present in the stimulus, performance in this experiment should be the same as
in Experiment 2.

2.2.5 Results and Discussion. Table 1 shows the results. If subjects simply used a
pre-determined cutoff value for classification and were unable to determine a cutoff value
from the stimulus image from trial to trial, performance should have been lower here than
it was in Experiment 2. On the other hand, if the cutoff value was determined visually in
each trial, performance should not have been lower than that in Experiment 2. Table 1
shows that the latter case was true. These results suggest then that the separation of
intrinsic from extrinsic contours is done based on a cutoff value derived from global

processing of the visual stimulus, rather than from memory.

Table 1: Comparison of performance between Experiment 2 and Control Experiment for small square
distractors and for large square distractors. The numbers in parentheses represent standard errors.

Conditions Exp. 2 proportion correct Control exp. proportion correct
Small Squares

ZP 798 (053 774 (.055)

MS 804 (025 832 (.027)
Large Squares

ZP 610 (.019) 676 (.030)

MS 630 (.020) 682 (.029)
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3. MODEL DESCRIPTION
The psychophysical results suggest that in order for perception of a partialy visible
figure to occur, contours belonging to the figure must be distinguished from those that do
not. Any contour property that facilitates such classification may be used. In addition to
depth [Nakayama et al. 1989], some contour properties that may be used for such
classification are relative contour orientation (Exp. 1), relative contour curvature (Exp.
1), and relative contour length (Exps. 1 & 2). Further, the contour property used for
classification can be derived from global analysis of the image by the human visual
system. To test this theory, we developed a computational model based on the
exponential pyramid architecture. Testing the new model required three modul es:

(8 an input module for extracting contours from an image,

(b) the exponential pyramid-based model that implements our theory,

(c) atemplate matching module, which takes the output set of contours from (b)

and matches these against normally -oriented and 180°-rotated templates of a
figure, in order to determine the model’ s response to a given stimulusimage.

Of these three modules, only (b) is central to the theory. The exponential pyramid detects
the cutoff value of the contour property that partitions image contours into those that
belong to the figure and those that do not. The input module () is needed to supply the
exponential pyramid with the contours from an image. The template matching module (c)
is needed in order to evaluate the performance of the exponential pyramid in classifying
the image contours. Details of this evaluation will be given in the next section. The
remainder of this section describes the main aspects of the exponential pyramid-based
model’s structure and function. The input and output modules (a) and (c) will aso be
briefly described.

3.1 Structure

The exponential pyramid architecture has been analyzed and shown to possess features
useful in modeling certain Gestalt bws of perceptual organization [Rosenfeld 1990;
Pizlo, Salach-Golyska, and Rosenfeld 1997]. A typical structure (the one used here) is a
"non-overlapped quad-pyramid”. Assume that the bottom layer of the pyramid has n
processing nodes. The next layer has n/4 nodes, the one above that n/16 nodes, and so
on. The top layer has only one node. Each node in a layer connects with four distinct
‘children’ nodes in the immediately lower layer and one ‘parent' node in the immediately

higher layer. Such a pyramid has (ogs n) + 1 layers. Each node in the pyramid has
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limited memory and processing capability. The input image is presented to the bottom
layer of the pyramid [Jolion and Rosenfeld 1994]. There are three characteristics of a
pyramid:
1) local, parallel processing: Different parts of an image can be processed
simultaneously.
2.) multiscale: Different layers represent different spatial scales.
3.) hierarchical processing: Processing can go in two directions; bottom up
(fine-to-coarse) and top down (coarse-to-fine).
Each node represents a receptive field, with nodes at higher layers in the pyramid having
larger receptive fields. For all simulations described in the ‘ Testing the Model’ section, a
pyramid with eight layers was used.

3.2 Function

Given a set of image contours as input, the function of the exponential pyramid-based
model is to determine whether there exists some contour property that partitions the set
into two subsets (e.g., intrinsic and extrinsic) and, if necessary, to choose a cutoff value
for that property. If such a property exists, the set of image contours can then be
partitioned based on this property. For example, T-junctions can be used in classifying an
image contour as belonging to either the nearer (occluding) or farther (occluded) figurein
the image [Nakayama et al. 1989; Grossberg 1997]. Similarly, as the psychophysical
results presented here show, differences in contour properties such as length (long vs.
short), orientation (oblique vs. not oblique), and curvature (straight vs. curved) can be
used in classifying an image contour as belonging to a (partially visible) figure or not.
Given a small set of such candidate properties, the model analyzes statistics of these
contour properties in the image and could decide which, if any, would best classify the
image contours. Details of thisanalysiswill now beillustrated with an example.

Consider the image in Figure 7(a). Assume that relative contour length is the
candidate property to be used for classifying contours in this image. In order for the
proposed pyramid model to perform this contour classification, it first needs to determine
a cutoff value for contour length that allows classifying those contours that belong to the
figure (an upside-down, asymmetric ‘U’) from those that do not. Bottom up (or fine-to-
coarse) processing accomplishes this in the proposed pyramid model. Bottom up
processing begins when all image contours are input to the bottom layer of the pyramid—

see Figure 7(b). For this example, we assume a two layer pyramid: the bottom layer has
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four nodes or ‘receptive fields' (as shown in Figure 7(b) by dividing the image into four
quadrants) and the top layer consists of just one receptive field which spans the entire
image. (For all simulations, we used an eight layer pyramid. An eight layer pyramid has
128 x 128 receptive fields in the bottom layer.) Each receptive field in any layer applies
the following algorithm to just those contours ‘visible' to it; thus all receptive fieldsin a
given layer may perform this processing in parallel on distinct parts of the image:

1.) initialize histogramfor each contour property (Il ength,

orientation, etc.)

2.) for each contour, c, visible to this receptive field:

- if pyramid layer * top and ¢ does not fit conpletely
in this receptive field:
- mark c¢c to be ‘passed up’ to ‘parent’ cell
- else
- for each contour property (length,
orientation, etc.):
- calculate contour property value for c
- increnent bin in contour property
hi st ogram corresponding to c’s val ue

3.) for each contour property (length, orientation, etc.):
- use histogramto conmpute variance of property val ue
- choose maxval as the smmllest value greater than
all contour values in this receptive field

- if pyramid |ayer * bottom
- choose cutoff value for this receptive field

The first step, initializing contour property histograms for a receptive field, involves
initializing each bin in a histogram to zero when the receptive field isin the bottom layer.
For all layers other than the bottom layer, each receptive field has exactly four ‘child’
receptive fields in the layer immediately below (see previous section on ‘Structure’).
Thus a receptive field in a non-bottom layer will initialize each bin in a histogram to the
sum of the corresponding bins of its four ‘child’ receptive fields. In the second step, a
receptive field considers each of the image contours ‘visble' to it. In the bottom layer,
this is literally true. In non-bottom layers, a receptive field receives just the image
contours ‘passed up’ from its four ‘child’ receptive fields. A child passes up to its
‘parent’ receptive field just those image contours that do not fit completely within the
child’s receptive field. A child performs *‘histogramming’ for al other image contoursin
its receptive field. (Histogramming is a common technique used for image segmentation -
see Horn [1986]; see Jolion and Rosenfeld [1994], for examples of histogramming in

conjunction with pyramids). The third step in the algorithm tries to choose the cutoff
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value for a contour property using a technique analogous to root detection [Jolion and
Rosenfeld 1994]. This technique will now beillustrated.

o

Figure 7. Determination of contour length property cutoff (s(:)e text for details).

Consider the lower right hand quadrant in the ‘bottom layer’ depicted in Figure 7(b).
Most of the contoursin this ‘receptive field’ are of the same length, so the variance of the
contour length property will be quite small. As processing proceeds to the next higher
layer in the pyramid, the receptive field size becomes larger (here it spans the entire
image, because in this example we consider only a two layer pyramid). Now, the parent
receptive field contains contours belonging to alarger polygonal figure (the target) and to
the smaller squares. Since contours belonging to the target figure tend to be longer, the
variance of contour length is much greater than in the child receptive field (corresponding
to the lower right quadrant of Figure 7(b)). The parent receptive field (in the top layer)
computes the ratio of its contour length variance to that of its child. If this ratio exceeds
some threshold, it chooses the contour length cutoff to be just greater than the longest
contour in the child receptive field - maxval in the algorithm. If this ratio exceeds the
threshold for more than one child, then the minimum maxval is chosen as the cutoff for
the parent receptive field. (We used 1.25 as the threshold for both relative contour length
and relative contour orientation - this threshold was empiricaly determined in
preliminary simulations.) In particular, note that global information is used in
determining the cutoff for a contour property. In subsequent top down (or coarse-to-fine)
processing, the cutoff value is used to classify image contours as belonging to the target
figure or not?. In the section ‘Testing the Model’, we report simulation results which

suggest that the proposed exponential pyramid-based model is psychologically plausible.

3.3 Input
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The input module applies Sobel edge detection with custom contour extraction to a
stimulus image to find the set of image contours. Figure 8 shows some examples. As
noted previously, the input module (and the output module described next) was built to
facilitate evaluation of the proposed exponential pyramid model. As such, we do not
claim that the human visual system uses Sobel edge detection to recover image contours.
Instead, image contours could be recovered by any of the large class of image
segmentation methods [Davies 1997; Ballard and Brown 1982; Barrow and Tenenbaum
1986; Horn 1986].

3.4 Output

When two types of contour are present within the image (e.g., contours intrinsic to a
figure vs. those extrinsic to it), the output d the exponentia pyramid model is a
classification of each image contour into one of the two types (if possible). The template
matching module receives the contours that have been classified by the pyramid as being
intrinsic to the target figure and matches these to normally-oriented and 180°-rotated
templates of the figure, to determine which template best matches the set of intrinsic
contours. Again, this template matching module exists for the purpose of evaluating the

performance of the proposed exponential pyramid model.
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Figure 8. Left column shows original sample stimuli. Right column shows results of Sobel edge detection and
custom contour extraction. (a) Small diamond distractor stimulus. (b) Large diamond distractor stimulus.
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4. TESTING THE MODEL

Evaluation of the model’s performance was conceptually simple — treat the model as an
additional subject in an experiment. Then compare its performance to that of the human
subjects from the experiment. There was one free parameter in the model: the magnitude
of noise in the perceptual representation of intrinsic contour. First, model performance
was compared to human performance in an experiment testing the effect of contour
orientation. Then, model performance was compared to human performance in an
experiment testing the effect of contour Iength. The model was not tested on the effect of
contour curvature. Recall that the performance of human subjects was high and equally
good in the contour orientation and contour curvature cases (Experiment 1). Performance
was high because the separation of intrinsic from extrinsic contours was quite easy in
both cases. Therefore, it was assumed that the results from the contour orientation
experimental conditions would be sufficient for estimation of the free parameter in the
model.

4.1 Contour Orientation

In order to compare model performance to human performance with respect to the effect
of relative contour orientation, we replicated the diamond conditions from Experiment 1
with two subjects, MS and ZP. We used atotal distractor area of 640,000 pixels, which is
larger than that used in Experiment 1. Larger total distractor area made the task
somewhat more difficult. By doing this we wanted to make sure that the subjects’
performance was not too close to perfect. Both subjects used the same sets of randomly
generated stimuli.

The model was applied to the same sets of stimuli used by human subjects. Two types
of analysis were made for each stimulus: (i) the intrinsic/extrinsic contour classification;
(if) template matching. In the template matching part, the intrinsic contours extracted
from the image were compared to both the normal orientation template and the 180°-
rotated orientation template of the target. For each template, the total length of intrinsic
contour matched was computed. Thisis called the support ratio |. Then, the difference Iy
between the support ratios for the normal and rotated templates was computed. A positive
difference indicated the response “normal”, a negative difference indicated the response
“rotated”.

20



If the model is psychologically plausible, there should be a systematic relationship
between the accuracy of human response and the magnitude of Iy;. High positive values
of Iy, as detected by the model, should correspond to high proportions of responses
“normal” by the human subject. Conversely, high negative values of Iy should
correspond to high proportions of responses “rotated” by the human subject. Such a
relationship is called a psychometric function. This kind of a systematic relationship
would suggest that the amount of intrinsic contour detected by the visual system of the
human observer, which is the input to the decisional module of the observer, isidentical
to the amount of intrinsic contour detected (recovered) by the model. If thisisindeed the
case, then the claimthat the computational methods involved in the model represent the
perceptual mechanisms of the human observer will be supported. Details of model
evaluation follow.

The support ratio of acontour c isdefined as:
lc=do/Dg (@)
where D, = total length of contour ¢ and d; = total length of visible (physically present)
contour for contour c. Asthe support ratio of contour ¢ increases, so doesthe ‘ perceptual
strength’ of contour ¢ [Shipley and Kellman 1992].

The model estimates I by superimposing the template of the target at all positions on
the stimulus image and computing the length of the overlap between the contoursin the
image that were classified as intrinsic and the contours of the template. It takes the
maximum value of the overlap across positions of the template and normalizes it to D.
For the template at normal orientation, the normalized value (support ratio) is denoted by
In and for the template at the rotated orientation, the normalized value is denoted by I,.
The model then computes the difference ly:

Iw=In=1. )
The decision rule which determines the model’ s response is given by:
Im <0: respond "rotated”,
r= Iy>0: respond"normal”,
Im = 0: respond "normal” withp=0.5. 3
If this model is psychologically plausible, there should be a relationship between the
value of |y, as computed by the model, and human performance. Note that I\, iswhat the

model detects, as opposed to what isactually given in theimage. Let:

Im=1"+1T oy +T 1wy @
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where |y = ‘detected’ difference of support ratios, [ = ‘actual’ difference of support
ratios, T oy ~ N(Os%opm), and Ty ~ N(Os% ). T oy represents error in using
orientation as a classification feature. 1 1ov) represents all other sources of model error.
If s%om) =7y = O then:
=1 (5)
This happens when classification of intrinsic vs. extrinsic contours is perfect. In such a
case using decision rule (3) leads to the model’s 'psychometric’ function, which is a step
function. In the simulations, root detection led b perfect performance in the small
diamond distractor condition and nearly perfect performance (497/500 = .994 correct) in
the large diamond distractor condition. Specificdly, for Iy > 0, the model aways
correctly judged the target to be in its normal orientation and for Iy, < 0, it never judged
the target to be in its normal orientation. The three missesin the large diamond distractor
simulation happened when Iy = 0. In such trials, the model randomly responded either
‘normal’ or ‘rotated’. Evidently, it ‘guessed’ incorrectly in each of these threetrials.

For human subjects, equation (4) takes the form:

|H:|*+TO+TI (6)

where I = ‘detected’ difference of support ratios by the human observer, T o ~N(0,5%0),
and T, ~ N(0s?). T o represents human error in using orientation as a classification
feature. T | represents error produced by noise in the perceptual representation of intrinsic
contour. It seems reasonable to assume s = 0 because it is known that human subjects
are able to discriminate between lines whose orientations differ by less than a degree
[Regan and Beverley 1985]; here, there is a 45° orientation difference between the
contours to be discriminated (i.e., between the intrinsic and extrinsic contours). So, (6)
becomes:
ly=1"+T, . @
From (5) and (7), we obtain:
ly=1Iy+1, (78
Assume that the human observer uses a decision rule analogous to (3):

Iy <0: respond "rotated”,
r= Iy >0: respond"normal”,

I =0: respond "normal” with p=0.5. (8)
Using this rule leads to a psychometric function that is a sigmoid curve, rather than a step

function as implied by (3). The logic for this claim is as follows. In (7), for agiven I', Iy
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is a random variable due to the error term 1 |, as defined in (6). The density function for

Iy istherefore:

~

1@y - 1*

10

1 : s -
f(IH):@Slezé x ©
The probability of ahuman responding that thetargetisinits“normal” orientation can
be written as:
+¥
pr(“normal”) = p(lu >0)= O f(lk)di (10

0
Note from (5) that Iy can be substituted for I* in (9). Therefore, when py(“normal”) is
plotted against Iy, asigmoid curve is expected. Specifically, this curve is a cumulative
normal distribution with zero mean and variance s,2. These psychometric functions can
be determined because the model’s computation of |, and the subjects’ responses
pr(“ normal”) were obtained from the same stimuli.

Figure 9 shows the psychometric functions for each subject. (a)-(b) show the
functions in the small and large diamond distractor conditions for ZP. (c)-(d) show the
functions in the small and large diamond distractor conditions for MS. In each graph, the
solid curve is the curve fitted to the data points by using Probit Analysis [Finney 1971].
The goodness of fit was evaluated using a c? test. Large values of ¢? indicate poor fit
which might be caused by either using the wrong approximating function (here, Gaussian
is assumed) or by not including factors in the model that have a substantial effect on the
subject’s performance. Here only one such factor is included, namely Iy. If on the other
hand, the c¢? is not very large, we are justified in claiming that I is the only factor
(except for random Gaussian noise) which accounts for human performance in the

orientation experiment. This was the case for each curve for each subject. Table 2 shows
u v

the Pearson c?, its p-value, the (M, S ) parameter estimates, and their standard errors.

Note that the estimated mean of the psychometric function was close to zero in al

conditions (as compared to se). This indicates that the subjects did not have appreciable

response bias towards either a"normal” or "rotated" response.
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Table 2: Curve fitting and goodness of curve fit

Distractor Type/

Subject m se S se c df p
Small Diamonds

ZP .008 .008 116 .009 10779 6 .09
MS .005 .006 .070 .005 6.034 6 419
Large Diamonds

ZP 024 .009 149 015 1.565 7 .980
MS -000 .005 062 004 9802 7 200
Small and Large Combined

ZP 014 .006 130 .008 9117 7 244
MS 002 004 066 .003 1282 7 127

24



IOt NE) - SU bt ZP Flgure 9/k] - Subject ZF

3 ]
£ E
E 3
i T
32 - a oy L ¥
Im Im
" Figure 8(c] - Subject MS | Figure 9id] - Subject MS
i
07E as
i F
o LB =
5 3 o
& '
038 LE
iz T [] [X] '3 43 an 1 [X] [
Im Im

Figure 9. Psychometric functions for contour orientation conditions. (8) Small diamond distractor condition for
subject ZP. (b) Large diamond distractor condition for subject ZP. (c) Small diamond distractor condition for
subject MS. (d) Large diamond distractor condition for subject MS.

The two experimental conditions — small and large diamond distractors — produced
similar psychometric functions. This was expected because the values of I, computed by
the model were very similar in the two conditions. In other words, these two conditions
were of eual difficulty for the model. If the model is psychologically plausible, these
two conditions should also be of equal difficulty for the subjects, and in fact they were
(see Figure 5). Therefore, we estimated the psychometric function from both conditions
taken together, to obtain a more reliable estimate of the variance, 6,2, of thefunction.

The next question is whether this model would generalize to other types of stimuli,
where the property for separating intrinsic from extrinsic contours is not contour
orientation. In fact, one might argue that the simulations presented so far have not
provided a strong test of the model simply because the separation of intrinsic from
extrinsic contours was quite easy and the detected support ratio Iy wasusually identical
to the actual support ratio I*. In other words, is the actual support ratio, as represented by
I*, the whole story?

The results of Experiment 2 indicate otherwise (see Figure 6). Recall that in this

experiment, the length of the contour was the property to be used in classification of



Table 3: Actual support ratio (I*) is approximately constant when Total Distractor Area (TDA) iscongtant.
Results for square dstractors.

Condition average I* se
small TDA
small squares 1176 0149
medium squares 1228 0145
large squares 1196 0170
medium TDA
small squares 1020 0122
medium sgquares 1072 .0099
large squares 1024 0132
large TDA
small squares 0876 0106
medium sguares 0940 0105
large squares .0886 0113

intrinsic vs. extrinsic contours. In this experiment, as distractor size increased
performance of subjects in the identification task decreased (by contrast, this was not so
for diamond distractors). This was true even though total distractor area (TDA) was held
constant across distractor size conditions. Since TDA determines the actual support ratio
I*, actual support ratio was also held constant across distractor size conditions. Table 3
illustrates this. It follows that the systematic effect of distractor size found in Experiment
2 cannot be accounted for by the actual support ratio I1*. The question now iswhether the
support ratio Iy, as detected by our model, can account for these psychophysical results.

To answer this question we performed a simulation experiment in which the model was
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applied to the stimuli that were used in Experiment 2. Next, we derive a prediction for the

parameters of the psychometric function in the case of stimuli from Experiment 2.

4.2 Contour Length

For the size simulations, the appropriate model (analogousto (4)) is:

=1 +T sm+T 1) (12)
where Iy, I', and T ) are as before, T sy ~ N(0,5%sowy)- T sowy represents model error in
using contour length as a classification property. From casual inspection of images such
as Figure 4(a)-(b), it is expected that st(M) > 0. Aswith the orientation simulations, 32.(,\,.)
=0. Thus (11) becomes:

|M:|*+TS(M) (12)
and
N (13

For human subjects, the relation analogousto (11) takes the form:

p=1"+1g+1, , (14)
where Iy, I", and T | are as before, 1 s ~ N(0,s%9). T s represents the error produced by the
human visual system in using contour length as a classification property. From (12) and
(14), we obtain:

=+ s-Tsm)+1 . (15

If the model classifies contours exactly the same way as the human visual system does (in

each and every tria), then:

T SZT S(M) - (16)
From (15) and (16) we obtain:
Iy =Im +1 |- (17)

Note that this equation is identical to equation (7a) for orientation. Therefore, if we plot
the proportion py(*normal”) of the human observer against ly, we should obtain one
psychometric function defined by equation (10) for all 9 conditions in the contour length
experiment. Recall that the psychometric function in equation (10) was estimated from
the results of an experiment where a different property, namely contour orientation, was
used for contour classification. Experiment 2, the contour length experiment, involved a
total of 9 conditions: there were three levels of the distractor size (discussed above) and
three levels of the total distractor area. If the pyramid model were psychologically
plausible, it would be able to account for psychophysical results from all 9 different

experimental conditions in the contour length experiment (Exp. 2) using no free
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parameters (the variance o> was estimated from the orientation data). If, however, the
model were inadequate, there would be no reason to expect that the psychometric
function defined in equation (10) would provide a good fit to al nine conditions of
Experiment 2.

Subject MS repeated the nine conditions of Experiment 2, using the same sets of
stimuli that were used by subject ZP in that experiment. Thus, the same nine sets of
stimuli were used for each subject and the model to facilitate direct comparison between
the model and each subject. The results of MS from the repetition of Experiment 2 were
very similar to his original results from Experiment 2.

Simulations were carried out in the same manner as for contour orientation. Here, two
simulations (one producing ly, the other producing 1*) were performed for each of the
nine experimental conditions. The first simulation produced classification of intrinsic and
extrinsic contours based on root detection. In the second simulation, no classification of
intrinsic vs. extrinsic contours was performed — all image contours were passed directly
to the template matching module. Thus, the first simulation for a given condition
produced detected support ratio (in the form of 1), while the second simulation produced
actual support ratio (in the form of 1*). While the first set of simulations facilitated
testing the model proposed here, the second set of simulations permitted testing the
predictive power of actual support ratio [Shipley and Kellman 1992]. The contour
orientation simulations did not allow an independent test of K, and I* because the
populations of intrinsic and extrinsic contours were so clearly separable that Iy = I*
(detected support ratio was equal to actual support ratio).

We fitted one psychometric function to the results pooled from all 9 conditions of
Experiment 2 for both Iy and 1*. Figure 10 depicts the relationship among estimated s’s
for these psychometric functions as well as for that of the combined orientation
conditions. It is clear that for both subjects, there is not a significant difference between
the s’s for the contour orientation psychometric function and the contour length
psychometric function for the |, case. The s for the contour length psychometric
function for I* is, however, significantly different (by a factor of 2) from the other two
s’s. The fact that there is no significant difference between the s for contour orientation
and contour length in the case of Iy suggests that the curve estimated from contour
orientation data can account for the psychophysical results from each of the nine
individual conditions in the contour length experiment (Exp. 2). This conjecture will be
evaluated by analyzing the slopes of the psychometric functions.
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Figure 10. Comparison of s's for contour orientation (diamond distractors), contour length (sueredisractors—
Im simulations), contour length (square distractors — I* simulations).

We fitted psychometric functions to the individual 9 conditions of Experiment 2. The
estimated ¢’ s are shown in Figure 11. Each graph in this figure shows estimated s for the
curve fitted to the combined diamond distractor conditions (solid horizontal line), the
estimated s for the curve fitted to the combined square distractor conditions (dashed
horizontal line), and the estimated s for the curves individually fitted for each of the nine
square distractor conditions (nine data points). There is one graph each for Iy, and for I*
for each subject. The s for combined length (square distractor) conditions and s for
combined orientation (diamond distractor) conditions are very similar in the case of ly.
However, thisis not true in the case of 1*: the solid and dashed lines for each subject are
spaced farther apart. This result was aready shown in Figure 10. The new aspect is the
set of s’s from the individual conditions. The data points representing the s’sfall closer
to both lines in the case of |y. This fact illustrates that the psychometric function
estimated in the orientation experiment can indeed account well for the results from the
individual conditions in the length experiment when |, (but not I*) is used as the
independent variable. Note that the data points in the case of I* are not scattered
randomly. Instead, they show a systematic pattern. The nine conditions represent three
triplets. Each triplet represents a specific total distractor area: triplets {1,2,3}, {4,5,6},
and {7,8,9} represent small, medium, and large total distractor area, respectively. Thes’'s
for 1* across the triplets of conditions are similar. This means that I* can account for
differences in performance across different TDAS. Thisis not surprising because I* isin

fact closely related to TDA (as shown in Table 3). But s's for I* within triplets are not
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smilar. Instead, the s’s are positively correlated with the distractor size: with the
exception of the last triplet of points for subject ZP (i.e., the data points for conditions
7,8,9), each triplet of points is monotonically increasing with condition. This systematic
change of s across experimental conditions represents differences in difficulty across the
conditions that are not accounted for by the psychometric function estimated in the
orientation experiment. In other words, if this function were substituted for the set of nine
individually fitted curves for I*, information pertaining to this systematic relationship

would belost.
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Figure 11. Comparison of ‘overall’ contour orientation and contour length s'stothe‘indvidd’ s'sfromeach
contour length condition.
Figure 12(a) shows the Iy histograms for each of the nine individual conditions. The

top row represents small TDA, the middle row represents medium TDA, and the bottom
row represents large TDA. Figure 12(b) shows the corresponding I* histograms for the
nine conditions. Note that all 1* histograms for alevel of TDA are similarto one another.
The Iy histograms, on the other hand, do vary substantially across conditions for a given
level of TDA. The conditions that were easy for subjects led to many large absolute
values of ly. Those that were difficult for subjects led to many small absolute values of

Im. This observation led to the following analysis.
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According to model predictions, one psychometric function (equation 10) can account
for dl nine conditions. The differences in the difficulty would be entirely attributable to
the absolute magnitude of Iy as detected by the model (see histograms). If that is the
case, then the proportion correct for each of the nine sessions can be predicted from the
histograms of |4 and the noise inherent in the perceptual representation of intrinsic
contour as estimated by o,. This prediction is made as follows. From the ‘overall’ fitted
curve P(Iy), the proportion of correct responses, p, for any value of I, can be determined
by taking p = P(Iy) when Iy, >0, and p =1 - P(Iy) when Iy <0. Assume a vector of such
proportions, p. Next, assume a vector of n; , where i = experimental condition 1,...,9 and
where each element of n; is the number of trials falling in a particular interval of Iy (see
histograms). Then, the overall predicted proportion correct for a given experimental
condition i is given by:

B = (-n)/(m-1), i=1..9 19)
where 1 is a column vector whose elements are all ones. If the model is psychologically
plausible, then p) computed from (18) should be equal to the proportion correct from the
corresponding condition i in the psychophysical experiment. So, if estimated proportion
correct p is plotted against actual proportion correct from the experiment, the data points
should be o a diagonal. If, however, the model has no relationship to perceptual
mechanisms, then the data points should fall on ahorizontal line.

Formula (18) was applied to both the |, and I* cases, and the results are shown in
Figure 13. The solid line is the diagonal (slope of +1). The o's represent the data points
which correspond to predicted proportion correct based on histograms of I, for each of
the nine conditions for the subject. The x’s are the data points corresponding to the
predicted proportion correct where the prediction was based on the histograms of 1*. A
regression line was fitted to the points produced by Iy and to those produced by 1*. As
Figure 13 shows, the slope of the regression line fitted for the I* predictions is not much
different from horizontal. A statistical analysis confirmed that the slope for the I* line
was not significantly different than zero for either subject (ZP: slope = .072, se = .073;
MS: dope = .115, se = .142). This means that I* has no predictive value across the
experimental conditions used in this experiment. On the other hand, the slope of the
regression line fitted for the I, predictionsis not close to zero. In fact, this slopeis much
greater than zero for both subjects. For subject MS, this slope was close to one (slope =
1.226, se = .176). For subject ZP, the slope for the Iy, line was not close to 1 (slope =
.653, se = .084). However, from looking at this graph, it is clear that for the more difficult
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experimental conditions, there was a floor effect in the case of ZP (performance close to
chance), which would likely have affected the slope of the resulting fitted regression line.
To test this, the two data points corresponding to the two conditions where ZP had
proportion correct less than .6 in the psychophysical experiment were removed and the
regression was performed again. The slope increased to .785 (se = .072), suggesting that
the slope of the relation between observed p and predicted p may indeed be one for both
subjects. These results clearly show that the model that produces Iy is a much better
model of human performance than the one which produces I*. The fact that the
regression line for Iy for each subject is shifted down relative to the diagonal indicates
that there is yet some other factor besides detected support ratio. This issue will be
revisited in the General Discussion section. From this graph, however, it is clear that

detected support ratio is amore important factor than actual support ratio.
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Figure 13. Predictions by Im and I* of performance in Experiment 2. (a) Predictions for subject ZP. (b)
Predictions for subject MS.

To summarize, the simulation results presented above show that our model of the
perception of partialy visible figures is psychologically plausible. Using root detection-
based classification (I simulations), it provided a good account of the psychophysical
results. The relationship between model and human results was much stronger than when
classification was not used (I1* simulations). This implies that detected support ratio is a
more important factor than actual support ratio [Shipley and Kellman 1992] in the
perception of partially visible figures. We would like to emphasize the fact that the root
detection-based classification, which is a critical element in our model, involves global
processing of the image. Only after the entire image has been analyzed does the model
obtain a cutoff value for a given contour property that can then be used to reliably
classify those image contours belonging to the figure. A purely local based analysisis
unlikely to produce the required classification. The strong account of the psychophysical
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data provided by this model suggests that humans also use this kind of global processing
in classifying contours. This conclusion is consistent with the Gestalt idea that something
about the whole may guide how the parts are grouped into that whole [Wertheimer
1923/1958; Koffka 1935].

5. GENERAL DISCUSSION

Figure-ground segregation for complex images where the figure is only partialy visible
seems to require that image contours first be classified as either belonging or not to the
figure. Nakayama et a. [1989] proposed this already in the context of partially occluded
figures. However, unlike their theory, we propose that depth cues are not necessary to
facilitate such classification. Rather, any property of contours can potentially be used to
classify the contours in an image as either belonging or not to a partially visible figure.
The psychophysical results presented here show that relative contour orientation (Exp.
1), relative contour curvature (Exp. 1), and relative contour length (Exps. 1-2) are other
contour properties, in addition to depth, that may be used in the classification of image
contours. Further, our psychophysical results, especially those of the contour length
(square distractor) conditions, suggest that a human observer globally processes animage
(or alarge part of it) to find the intrinsic contours. A new model that incorporates these
principles was formulated. In particular, this new model is efficient in globally processing
an image, because a ‘receptive field' in a given layer of the model may process its
distinct portion of the image in paralel with all other receptive fields at that layer.
Computer simulations using this new model accounted well for the results of several
psychophysica experimental conditions presented here. Using just one free parameter,
the new model accounted for the results across 11 experimental conditions.

One potential objection to this proposed theory is that perhaps classification of image
contours per se is unnecessary. That is, perhaps the visual system can group just the
contours that belong to the partially visible figure without relying on an explicit prior
classification stage. The contour length simulations of Experiment 2 provide strong
evidence against this argument, however. Two sets of simulations of Experiment 2 were
performed — the |y simulations, which used the exponential pyramid model to perform
the intrinsic/extrinsic classification, and the I* simulations, where image contours were
passed, unclassified, directly to the template matching module. As shown, the |y
simulations provided the superior account of the human psychophysical results of

Experiment 2. These simulations also showed that support ratio, as formulated by Shipley
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and Kellman [1992], does not provide a complete explanation for the perception of
partially visible figures. Detected support ratio, as defined in this paper, provides a more
complete explanation.

While the contour length Iy, simulations provided a much better account than the 1*
simulations of the results of Experiment 2, consider again Figure 13. Note for each
subject that the fitted |, ‘prediction’ line is shifted down from the diagonal (that
represents human performance). This suggests the presence of a secondary factor. This
secondary factor could be related to some role of region information in the perception of
partialy visible figures. Indeed, it has recently been shown that region or surface
information can play a role in this task [Scheessele and Perez 2003; Yin, Kellman, and
Shipley 1997; Tseand Albert 1998; Grossberg 1997].

FOOTNOTES
1 The retinal image also provides region information, which arises from figure
(object) surfaces and from the background in the visual scene. Here, we focus only on the
contribution of contour information to figure-ground segregation. Additionally, non-
retinal sources of information, such as memory, are not considered here (but see Peterson
[1999]; Pamer and Rock [19944], [1994b]; Veceraand O’ Reilly [2000Q]).
2 The use of a bottom up stage to compute the statistics of an image and a top down

stage for segmentation resembles Bouman and Liu’'s[1991] algorithm.

REFERENCES

BALLARD, D. H., AND BROWN, C. M. 1982. Computer vision. Englewood Cliffs, NJ: Prentice-Hall, Inc.
BARROW, H. G., AND TENENBAUM, J. M. 1986. Computational approachesto vision. In K. R. BOFF, L.
KAUFMANN, AND J. P. THOMAS (Eds.), Handbook of human per ception and performance. (pp. 38-1—38-70).
New York: Wiley.

BoOUMAN, C., AND LIu, B. 1991. Multiple resolution segmentation of textured images. |EEE Transactionson
Pattern Analysis & Machine Intelligence, 13, 99-113.

BROWN, J. M., AND KocH, C. 1993. Influences of closure, occlusion, and size on the percgption of fragmented
pictures. Perception & Psychophysics, 53, 436-442.

DAVIES E. R. 1997. Machine vision: Theory, algorithms, practicalities, 2nd ed. San Diego, CA: Academic
Press.

ELDER, J., AND ZUCKER, S. 1994. A measure of closure. Vision Research, 34, 3361-3369.

ELDER, J. H., AND GOLDBERG, R. M. 2002. Ecologica datistics of Gestalt laws for the perceptua organization
of contours. Journal of Vision, 2, 324-353.

FELDMAN, J. 2001. Bayesian contour integration. Perception & Psychophysics, 63, 1171-1182.

FINNEY, D. J. 1971. Probit analysis. Cambridge: Cambridge University Press.



GEISLER, W. S, PERRY, J. S., SUPER, B. J, AND GALLOGLY, D. P. 2001. Edge co-occurenceinneturd imeges
predicts contour grouping performance. Vision Research, 41, 711-724.

GROSSBERG, S. 1994. 3-D vision and figure-ground separation by visual cortex. Perception & Psychophysics,
55, 48-120.

GROSSBERG, S. 1997. Cortical dynamics of three-dimensional figure-ground perception of two-dmensond
pictures. Psychological Review, 104, 618-658.

HORN, B. K. P. 1986. Robot vision. Cambridge, MA: MIT Press.

JOLION, J. M., AND ROSENFELD, A. 1994. A pyramidal framework for early vision. Dordrecht, TheNetherlands
Kluwer Academic Publishers.

KELLMAN, P. J.,, AND SHIPLEY, T. F. 1991. A theory of visual interpolation in object perception. Cognitive
Psychology, 23, 141-221.

KOFFKA, K. 1935. Principles of Gestalt psychology. New Y ork: Harcourt Brace.

NAKAYAMA, K., SHIMOJO, S., AND SLVERMAN, G. H. 1989. Stereoscopic depth: Its relation to image
segmentation, grouping, and the recognition of occluded objects. Perception, 18, 55-68.

PALMER, S., AND RockK, |. 1994a. On the nature and order of organizational processing: A reply to Peterson.
Psychonomic Bulletin & Review, 1, 515-519.

PALMER, S, AND Rock, I. 1994b. Rethinking perceptual organization: the role of uniform connectedness.
Psychonomic Bulletin & Review, 1, 29-55.

PALMER, S. E. 1999. Vision science: Photons to phenomenology. Cambridge, MA: MIT Press.

PETERSON, M. A. 1999. What's in a stage name? Comment on Vecera and O’ Reilly (1998). Journal of
Experimental Psychology: Human Perception and Performance, 25, 276-286.

PizLO, Z., SALACH-GOLYSKA, M., AND ROSENFELD, A. 1997. Curve detection in anoisy image. Vision
Research, 37, 1217-1241.

REGAN, D., AND BEVERLEY, K. I. 1985. Postadaptation orientation discrimination. Journal of the Optical
Society of America (A), 2, 147-155.

ROSENFELD, A. 1990. Pyramid algorithms for efficient vision. In C. BLAKEMORE (Ed.), Vison: Codingand
efficiency (pp. 423-430). Cambridge, Great Britain: Cambridge University Press.

RuBIN, E. 1958. Figure and ground. In D. C. BEARDSLEE AND M. WERTHEIMER (Eds), Trans, M. Werthemer,
Readings in Perception (pp. 194-203). Princeton, NJ D. Van Nostrand Company, Inc. [An abridged trandation
by M. Wertheimer of pp. 35-101 of Rubin, E., Visuell wahrgenommene Figuren (trandated by P. Callet into
German from the Danish Synsoplevede Figurer, Copenhagen: Gyldendalske, 1915). Copenhagen:
Gyldendalske, 1921.]

SCHEESSELE, M. R., AND PEREZ, T. M. 2003. Effect of region information on perception of partialy occluded
figures [Abstract]. Journal of Vision (to appear).

SHIPLEY, T. F., AND KELLMAN, P. J. 1992. Strength of visua interpolation depends on theratio of physically
specified to total edge length. Perception & Psychophysics, 52, 97-106.

SNGH, M., HOFFMAN, D. D., AND ALBERT, M. K. 1999. Contour completion and relative depth: Petter’srule
and support ratio. Psychological Science, 10, 423-428.

TREISMAN, A. 1986. Properties, parts, and objects. In K. R. BOFF, L. KAUFMANN, ANDJ P. THOMAS(EdS),
Handbook of human perception and performance. New York: Wiley.

TsE, P. U., AND ALBERT, M. K. 1998. Amodal completion in the absence of image tangent discontinuities.
Perception, 27, 455-464.

36



VECERA, S. P.,, AND O'REILLY, R. C. 2000. Graded effects in hierarchical figure-ground organization: Reply to
Peterson (1999). Journal of Experimental Psychology: Human Perception and Performance, 26, 1221-1231.

WERTHEIMER, M. 1958. Principles of Perceptual Organization. In D. C. BEARD SLEEANDM. WERTHEIMER
(Eds.), Trans., M. Wertheimer, Readings in Perception (pp. 115-135). Princeton, NJ: D. Van Nostrand

Company, Inc. [An abridged trandation by M. Wertheimer of Wertheimer, M., Untersuchungen zur Lehre von
der Gestalt, I1., Psychol. Forsch., 4, pp. 301-350, 1923.]

YIN, C., KELLMAN, P. J., AND SHIPLEY, T. F. 1997. Surface completion complements boundary interpolationin
the visual integration of partly occluded objects. Perception, 26, 1459-1479.

37



